1.tính: B = 2^15.7-2^16 : 5. 2^15 2. tìm x bt: a) x + (x+1) + (x+2)+….+(x+99)= 5450 b) 2.3^x-1 + (-3)^2 = 3^3 07/07/2021 Bởi Jasmine 1.tính: B = 2^15.7-2^16 : 5. 2^15 2. tìm x bt: a) x + (x+1) + (x+2)+….+(x+99)= 5450 b) 2.3^x-1 + (-3)^2 = 3^3
Giải thích các bước giải: $1.B=\dfrac{2^{15}.7-2^{16}}{5.2^{15}}$ $\to B=\dfrac{2^{15}.7-2^{15}.2}{5.2^{15}}$ $\to B=\dfrac{2^{15}.(7-2)}{5.2^{15}}$ $\to B=\dfrac{2^{15}.5}{5.2^{15}}$ $\to B=1$ 2.a. $x+(x+1)+(x+2)+..+(x+99)=5450$$\to (x+x+..+x)+(0+1+2+..+99)=5450$ $\to 100x+\dfrac{(99+0).100}{2}=5450$ $\to 100x+4950=5450$ $\to 100x=500$ $\to x=5$ b.$2.3^{x-1}+(-3)^2=3^3$ $\to 2.3^{x-1}+9=27$ $\to 2.3^{x-1}=18$ $\to 3^{x-1}=9$ $\to 3^{x-1}=3^2$ $\to x-1=2\to x=3$ Bình luận
Đáp án:
Giải thích các bước giải:
Giải thích các bước giải:
$1.B=\dfrac{2^{15}.7-2^{16}}{5.2^{15}}$
$\to B=\dfrac{2^{15}.7-2^{15}.2}{5.2^{15}}$
$\to B=\dfrac{2^{15}.(7-2)}{5.2^{15}}$
$\to B=\dfrac{2^{15}.5}{5.2^{15}}$
$\to B=1$
2.a. $x+(x+1)+(x+2)+..+(x+99)=5450$
$\to (x+x+..+x)+(0+1+2+..+99)=5450$
$\to 100x+\dfrac{(99+0).100}{2}=5450$
$\to 100x+4950=5450$
$\to 100x=500$
$\to x=5$
b.$2.3^{x-1}+(-3)^2=3^3$
$\to 2.3^{x-1}+9=27$
$\to 2.3^{x-1}=18$
$\to 3^{x-1}=9$
$\to 3^{x-1}=3^2$
$\to x-1=2\to x=3$