111. BÂI TÂp NHÂ Phân tich căc da thńc sau thănh nhân 5. 6. 7. -1; a) x—2y + x2 —4y2 c) x6 —x 4 + 2×3 + 2×2; Tim x, bi€t: b) x2 —4x2y2 + y2 +

111. BÂI TÂp NHÂ
Phân tich căc da thńc sau thănh nhân
5.
6.
7.
-1;
a) x—2y + x2 —4y2
c) x6 —x 4 + 2×3 + 2×2;
Tim x, bi€t:
b) x2 —4x2y2 + y2 +2xy;
d) x3 + 3×2 + 3x+1 — 8 Y 3.
b) (3x-1)2 -9 = o;
Phân tich da thńc thănh nhân tir:
a) x2 —4x+3;
c) 2×2 -3x-2;
b) x2 +4x-12;
d) 2×3 +X—2×2 111. BÂI TÂp NHÂ
Phân tich căc da thńc sau thănh nhân
5.
6.
7.
-1;
a) x—2y + x2 —4y2
c) x6 —x 4 + 2×3 + 2×2;
Tim x, bi€t:
b) x2 —4x2y2 + y2 +2xy;
d) x3 + 3×2 + 3x+1 — 8 Y 3.
b) (3x-1)2 -9 = o;
Phân tich da thńc thănh nhân tir:
a) x2 —4x+3;
c) 2×2 -3x-2;
b) x2 +4x-12;
d) 2×3 +X—2×2

0 bình luận về “111. BÂI TÂp NHÂ Phân tich căc da thńc sau thănh nhân 5. 6. 7. -1; a) x—2y + x2 —4y2 c) x6 —x 4 + 2×3 + 2×2; Tim x, bi€t: b) x2 —4x2y2 + y2 +”

  1. Giải thích các bước giải:

    Ta có:

    \(\begin{array}{l}
    a,\\
    x – 2y + {x^2} – 4{y^2}\\
     = \left( {x – 2y} \right) + \left( {{x^2} – 4{y^2}} \right)\\
     = \left( {x – 2y} \right) + \left( {x – 2y} \right)\left( {x + 2y} \right)\\
     = \left( {x – 2y} \right)\left( {1 + x + 2y} \right)\\
    c,\\
    {x^6} – {x^4} + 2{x^3} + 2{x^2}\\
     = {x^2}.\left( {{x^4} – {x^2} + 2x + 2} \right)\\
     = {x^2}.\left[ {\left( {{x^4} – {x^2}} \right) + \left( {2x + 2} \right)} \right]\\
     = {x^2}.\left[ {{x^2}\left( {{x^2} – 1} \right) + 2\left( {x + 1} \right)} \right]\\
     = {x^2}.\left[ {{x^2}\left( {x – 1} \right)\left( {x + 1} \right) + 2\left( {x + 1} \right)} \right]\\
     = {x^2}.\left( {x + 1} \right).\left[ {{x^2}\left( {x – 1} \right) + 2} \right]\\
     = {x^2}\left( {x + 1} \right)\left( {{x^3} – {x^2} + 2} \right)\\
     = {x^2}\left( {x + 1} \right).\left[ {\left( {{x^3} + {x^2}} \right) – \left( {2{x^2} + 2x} \right) + \left( {2x + 2} \right)} \right]\\
     = {x^2}\left( {x + 1} \right).\left[ {{x^2}\left( {x + 1} \right) – 2x\left( {x + 1} \right) + 2\left( {x + 1} \right)} \right]\\
     = {x^2}.{\left( {x + 1} \right)^2}.\left( {{x^2} – 2x + 2} \right)\\
    b,\\
    {x^2} – 4{x^2}{y^2} + {y^2} + 2xy\\
     = \left( {{x^2} + 2xy + {y^2}} \right) – 4{x^2}{y^2}\\
     = {\left( {x + y} \right)^2} – {\left( {2xy} \right)^2}\\
     = \left( {x + y + 2xy} \right)\left( {x + y – 2xy} \right)\\
    d,\\
    {x^3} + 3{x^2} + 3x + 1 – 8{y^3}\\
     = \left( {{x^3} + 3{x^2} + 3x + 1} \right) – 8{y^3}\\
     = {\left( {x + 1} \right)^3} – {\left( {2y} \right)^3}\\
     = \left( {x + 1 – 2y} \right)\left[ {{{\left( {x + 1} \right)}^2} – \left( {x + 1} \right).2y + 4{y^2}} \right]\\
    b,\\
    {\left( {3x – 1} \right)^2} – 9 = 0\\
     \Leftrightarrow {\left( {3x – 1} \right)^2} = 9\\
     \Leftrightarrow \left[ \begin{array}{l}
    3x – 1 = 3\\
    3x – 1 =  – 3
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{4}{3}\\
    x =  – \dfrac{2}{3}
    \end{array} \right.\\
    a,\\
    {x^2} – 4x + 3 = \left( {{x^2} – x} \right) – \left( {3x – 3} \right) = x\left( {x – 1} \right) – 3\left( {x – 1} \right) = \left( {x – 1} \right)\left( {x – 3} \right)\\
    c,\\
    2{x^2} – 3x – 2 = \left( {2{x^2} – 4x} \right) + \left( {x – 2} \right) = 2x\left( {x – 2} \right) + \left( {x – 2} \right) = \left( {x – 2} \right)\left( {2x + 1} \right)\\
    b,\\
    {x^2} + 4x – 12 = \left( {{x^2} + 6x} \right) – \left( {2x + 12} \right) = x\left( {x + 6} \right) – 2\left( {x + 6} \right) = \left( {x + 6} \right)\left( {x – 2} \right)\\
    d,\\
    2{x^3} + x – 2{x^2} = x\left( {2{x^2} – 2x + 1} \right)
    \end{array}\) 

    Bình luận

Viết một bình luận