(12x^4-11x^3+ax^2+bx-12) chia hết cho (3x^2+x-6) tìm hệ số a;b 12/11/2021 Bởi Jasmine (12x^4-11x^3+ax^2+bx-12) chia hết cho (3x^2+x-6) tìm hệ số a;b
Đáp án: $a = – 23;b = 2$ Giải thích các bước giải: Ta có: $\begin{array}{l}12{x^4} – 11{x^3} + a{x^2} + bx – 12\\ = 4{x^2}\left( {3{x^2} + x – 6} \right) – 5x\left( {3{x^2} + x – 6} \right) + \dfrac{{a + 29}}{3}\left( {3{x^2} + x – 6} \right) + \left( {b – \dfrac{{a + 29}}{3}} \right)x + 2\left( {a + 29} \right) – 12\\ = \left( {3{x^2} + x – 6} \right)\left( {4{x^2} – 5x + \dfrac{{a + 29}}{3}} \right) + \left( {b – \dfrac{{a + 29}}{3}} \right)x + 2\left( {a + 29} \right) – 12\end{array}$ Để $\left( {12{x^4} – 11{x^3} + a{x^2} + bx – 12} \right) \vdots \left( {3{x^2} + x – 6} \right)$ $\begin{array}{l} \Leftrightarrow \left( {b – \dfrac{{a + 29}}{3}} \right)x + 2\left( {a + 29} \right) – 12 = 0\\ \Leftrightarrow \left\{ \begin{array}{l}b – \dfrac{{a + 29}}{3} = 0\\2\left( {a + 29} \right) – 12 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{{a + 29}}{3}\\a = – 23\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = 2\\a = – 23\end{array} \right.\end{array}$ Vậy $a = – 23;b = 2$ Bình luận
Đáp án:
$a = – 23;b = 2$
Giải thích các bước giải:
Ta có:
$\begin{array}{l}
12{x^4} – 11{x^3} + a{x^2} + bx – 12\\
= 4{x^2}\left( {3{x^2} + x – 6} \right) – 5x\left( {3{x^2} + x – 6} \right) + \dfrac{{a + 29}}{3}\left( {3{x^2} + x – 6} \right) + \left( {b – \dfrac{{a + 29}}{3}} \right)x + 2\left( {a + 29} \right) – 12\\
= \left( {3{x^2} + x – 6} \right)\left( {4{x^2} – 5x + \dfrac{{a + 29}}{3}} \right) + \left( {b – \dfrac{{a + 29}}{3}} \right)x + 2\left( {a + 29} \right) – 12
\end{array}$
Để $\left( {12{x^4} – 11{x^3} + a{x^2} + bx – 12} \right) \vdots \left( {3{x^2} + x – 6} \right)$
$\begin{array}{l}
\Leftrightarrow \left( {b – \dfrac{{a + 29}}{3}} \right)x + 2\left( {a + 29} \right) – 12 = 0\\
\Leftrightarrow \left\{ \begin{array}{l}
b – \dfrac{{a + 29}}{3} = 0\\
2\left( {a + 29} \right) – 12 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
b = \dfrac{{a + 29}}{3}\\
a = – 23
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
b = 2\\
a = – 23
\end{array} \right.
\end{array}$
Vậy $a = – 23;b = 2$