–12(x – 5) + 7(3 – x) = -4 (x – 2).(x + 4) = 0 (x –2).( x + 15) = 0 (7 – x).( x + 19) 28/10/2021 Bởi Brielle –12(x – 5) + 7(3 – x) = -4 (x – 2).(x + 4) = 0 (x –2).( x + 15) = 0 (7 – x).( x + 19) = 0
`a)-12(x-5)+7(3-x)=-4` `→-12x+60+21-7x=-4` `→-19x+81=-4` `→-19x=-85` `→x=85/19` Vậy `x=85/19` `b)(x-2)(x+4)=0` `⇔` \(\left[ \begin{array}{l}x-2=0\\x+4=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=2\\x=-4\end{array} \right.\) Vậy `x∈{2;-4}` `c)(x-2)(x+15)=0` `⇔` \(\left[ \begin{array}{l}x-2=0\\x+15=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=2\\x=-15\end{array} \right.\) Vậy `x∈{2;-15}` `d)(7-x)(x+19)=0` `⇔` \(\left[ \begin{array}{l}7-x=0\\x+19=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=7\\x=-19\end{array} \right.\) Vậy `x∈{7;-19}` Bình luận
`a) -12(x-5)+7(3-x)=-4` `<=> -12x+60+21-7x=-4` `<=> -12x-7x=-4-60-21` `<=> -19x=-85` `<=> x=85/19` `b) (x-2)(x+4)=0` \(⇔\left[ \begin{array}{l}x-2=0\\x+4=0\end{array} \right.\) \(⇔\left[ \begin{array}{l}x=0+2\\x=0-4\end{array} \right.\) \(⇔\left[ \begin{array}{l}x=2\\x=-4\end{array} \right.\) – Vậy `x in {2;-4}` `c) (x-2)(x+15)=0` \(⇔\left[ \begin{array}{l}x-2=0\\x+15=0\end{array} \right.\) \(⇔\left[ \begin{array}{l}x=0+2\\x=0-15\end{array} \right.\) \(⇔\left[ \begin{array}{l}x=2\\x=-15\end{array} \right.\) – Vậy `x in {2;-15}` `d) (7-x)(x+19)=0` \(⇔\left[ \begin{array}{l}7-x=0\\x+19=0\end{array} \right.\) \(⇔\left[ \begin{array}{l}-x=0-7\\x=0-19\end{array} \right.\) \(⇔\left[ \begin{array}{l}-x=-7\\x=-19\end{array} \right.\) \(⇔\left[ \begin{array}{l}x=7\\x=-19\end{array} \right.\) – Vậy `x in {7;-19}` Bình luận
`a)-12(x-5)+7(3-x)=-4`
`→-12x+60+21-7x=-4`
`→-19x+81=-4`
`→-19x=-85`
`→x=85/19`
Vậy `x=85/19`
`b)(x-2)(x+4)=0`
`⇔` \(\left[ \begin{array}{l}x-2=0\\x+4=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=2\\x=-4\end{array} \right.\)
Vậy `x∈{2;-4}`
`c)(x-2)(x+15)=0`
`⇔` \(\left[ \begin{array}{l}x-2=0\\x+15=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=2\\x=-15\end{array} \right.\)
Vậy `x∈{2;-15}`
`d)(7-x)(x+19)=0`
`⇔` \(\left[ \begin{array}{l}7-x=0\\x+19=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=7\\x=-19\end{array} \right.\)
Vậy `x∈{7;-19}`
`a) -12(x-5)+7(3-x)=-4`
`<=> -12x+60+21-7x=-4`
`<=> -12x-7x=-4-60-21`
`<=> -19x=-85`
`<=> x=85/19`
`b) (x-2)(x+4)=0`
\(⇔\left[ \begin{array}{l}x-2=0\\x+4=0\end{array} \right.\)
\(⇔\left[ \begin{array}{l}x=0+2\\x=0-4\end{array} \right.\)
\(⇔\left[ \begin{array}{l}x=2\\x=-4\end{array} \right.\)
– Vậy `x in {2;-4}`
`c) (x-2)(x+15)=0`
\(⇔\left[ \begin{array}{l}x-2=0\\x+15=0\end{array} \right.\)
\(⇔\left[ \begin{array}{l}x=0+2\\x=0-15\end{array} \right.\)
\(⇔\left[ \begin{array}{l}x=2\\x=-15\end{array} \right.\)
– Vậy `x in {2;-15}`
`d) (7-x)(x+19)=0`
\(⇔\left[ \begin{array}{l}7-x=0\\x+19=0\end{array} \right.\)
\(⇔\left[ \begin{array}{l}-x=0-7\\x=0-19\end{array} \right.\)
\(⇔\left[ \begin{array}{l}-x=-7\\x=-19\end{array} \right.\)
\(⇔\left[ \begin{array}{l}x=7\\x=-19\end{array} \right.\)
– Vậy `x in {7;-19}`