(2+1)(2^2+1)(2^4+1)(2^8+1)92^16+1) so sánh với 2^32 27/07/2021 Bởi Maria (2+1)(2^2+1)(2^4+1)(2^8+1)92^16+1) so sánh với 2^32
Đáp án: A<$2^{32}$ Giải thích các bước giải: \(\begin{array}{l} A=(2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1) \\ = 1(2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1) \\ = (2 – 1)(2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1) \\ = (2^2 – 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1) \\ = (2^4 – 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1) \\ = (2^8 – 1)(2^8 + 1)(2^{16} + 1) \\ = (2^{16} – 1)(2^{16} + 1) \\ = 2^{32} – 1 < 2^{32} \\ \end{array}\) Bình luận
Đáp án:
A<$2^{32}$
Giải thích các bước giải:
\(
\begin{array}{l}
A=(2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1) \\
= 1(2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1) \\
= (2 – 1)(2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1) \\
= (2^2 – 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1) \\
= (2^4 – 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1) \\
= (2^8 – 1)(2^8 + 1)(2^{16} + 1) \\
= (2^{16} – 1)(2^{16} + 1) \\
= 2^{32} – 1 < 2^{32} \\
\end{array}
\)