(2+1)(2^2+1)(2^4 +1)(2^8+1) Tính giúp mik 14/07/2021 Bởi Daisy (2+1)(2^2+1)(2^4 +1)(2^8+1) Tính giúp mik
( 2 + 1) ( $2^2$ + 1 ) ( $2^4$ + 1 ) ( $2^8$ + 1 ) ⇔ ( 2 – 1 ) ( 2 + 1 ) ( $2^2$ + 1 ) ( $2^4$ + 1 ) ( $2^8$ + 1 ) ⇔ ( $2^2$ – 1 ) ( $2^2$ + 1 ) ( $2^4$ + 1 ) ( $2^8$ + 1 ) ⇔ ( $2^4$ – 1 ) ( $2^4$ + 1 ) ( $2^8$ + 1 ) ⇔ ( $2^8$ – 1 ) ( $2^8$ + 1 ) ⇔( $2^16$ – 1 ) Ta có: $2^{16}$ = 65536 ⇔ 65536 – 1 = 65535 $#Chúc bạn học tốt!Nếu được cho mình xin CTLHN nha!$ Bình luận
Đáp án: 65535 Giải thích các bước giải: (2+1)(`2^2`+1)(`2^4` +1)(`2^8`+1) =(2-1)(2+1)(`2^2`+1)(`2^4` +1)(`2^8`+1) =(`2^2`-1)(`2^2`+1)(`2^4` +1)(`2^8`+1) =(`2^4`-1)(`2^4` +1)(`2^8`+1) =(`2^8`-1)(`2^8`+1) =`2^16`-1 =65535 Bình luận
( 2 + 1) ( $2^2$ + 1 ) ( $2^4$ + 1 ) ( $2^8$ + 1 )
⇔ ( 2 – 1 ) ( 2 + 1 ) ( $2^2$ + 1 ) ( $2^4$ + 1 ) ( $2^8$ + 1 )
⇔ ( $2^2$ – 1 ) ( $2^2$ + 1 ) ( $2^4$ + 1 ) ( $2^8$ + 1 )
⇔ ( $2^4$ – 1 ) ( $2^4$ + 1 ) ( $2^8$ + 1 )
⇔ ( $2^8$ – 1 ) ( $2^8$ + 1 )
⇔( $2^16$ – 1 )
Ta có: $2^{16}$ = 65536
⇔ 65536 – 1 = 65535
$#Chúc bạn học tốt!Nếu được cho mình xin CTLHN nha!$
Đáp án:
65535
Giải thích các bước giải:
(2+1)(`2^2`+1)(`2^4` +1)(`2^8`+1)
=(2-1)(2+1)(`2^2`+1)(`2^4` +1)(`2^8`+1)
=(`2^2`-1)(`2^2`+1)(`2^4` +1)(`2^8`+1)
=(`2^4`-1)(`2^4` +1)(`2^8`+1)
=(`2^8`-1)(`2^8`+1)
=`2^16`-1
=65535