(x+2)(x+3)-(x-2)(x-5)=-4 (x+1)( $x^{2}$ -x+1)-x(x+3)(x-3)=8 27/11/2021 Bởi Allison (x+2)(x+3)-(x-2)(x-5)=-4 (x+1)( $x^{2}$ -x+1)-x(x+3)(x-3)=8
Đáp án: Giải thích các bước giải: $a)(x+2).(x+3)-(x-2).(x-5)=-4$ $⇔x^2+5x+6-(x^2-7x+10)=-4$ $⇔x^2+5x+6-x^2+7x-10=-4$ $⇔12x-4=-4$ $⇔12x=0$ $⇔x=0$ $b)(x+1).(x^2-x+1)-x.(x+3).(x-3)=8$ $⇔x^3+1-x.(x^2-9)=8$ $⇔x^3+1-x^3+9x=8$ $⇔9x=7$ $⇔x=\dfrac{7}{9}$ Bình luận
`(x+2)(x+3)-(x-2)(x-5)=-4` ⇔` (x²+3x+2x+6)` `-“( x²-5x-2x+10) “=-4` `⇔` `x² +5x +6 – x²+7x -10 +4=0` `⇔` `12x=0` `⇔ ` `x=0` Vậy `x=0` `(x+1)( x² -x+1)-x(x+3)(x-3)=8` `⇔` `(x³+1)³` `-x(x²-9) =8` `⇔` `x³ +1 -x³ +9x-8=0` `⇔` `9x -7=0` `⇔` `9x=7` `⇔“ x=“7/9` Vậy `x=“7/9` @lien2k6 Bình luận
Đáp án:
Giải thích các bước giải:
$a)(x+2).(x+3)-(x-2).(x-5)=-4$
$⇔x^2+5x+6-(x^2-7x+10)=-4$
$⇔x^2+5x+6-x^2+7x-10=-4$
$⇔12x-4=-4$
$⇔12x=0$
$⇔x=0$
$b)(x+1).(x^2-x+1)-x.(x+3).(x-3)=8$
$⇔x^3+1-x.(x^2-9)=8$
$⇔x^3+1-x^3+9x=8$
$⇔9x=7$
$⇔x=\dfrac{7}{9}$
`(x+2)(x+3)-(x-2)(x-5)=-4`
⇔` (x²+3x+2x+6)` `-“( x²-5x-2x+10) “=-4`
`⇔` `x² +5x +6 – x²+7x -10 +4=0`
`⇔` `12x=0`
`⇔ ` `x=0`
Vậy `x=0`
`(x+1)( x² -x+1)-x(x+3)(x-3)=8`
`⇔` `(x³+1)³` `-x(x²-9) =8`
`⇔` `x³ +1 -x³ +9x-8=0`
`⇔` `9x -7=0`
`⇔` `9x=7`
`⇔“ x=“7/9`
Vậy `x=“7/9`
@lien2k6