(x^2+5x+6)(x^2-11x+30)=180 6x^4-5x^3-38x^2-5x+6=0 giải hộ mình 2 PT sau 22/09/2021 Bởi Quinn (x^2+5x+6)(x^2-11x+30)=180 6x^4-5x^3-38x^2-5x+6=0 giải hộ mình 2 PT sau
Đáp án: a) \(\left[ \begin{array}{l}x = 0\\x = – 4\\x = 3\\x = 7\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}a)({x^2} + 5x + 6)({x^2} – 11x + 30) = 180\\ \to {x^4} – 11{x^3} + 30{x^2} + 5{x^3} – 55{x^2} + 150x + 6{x^2} – 66x + 180 = 180\\ \to {x^4} – 6{x^3} – 19{x^2} + 84x = 0\\ \to x\left( {{x^3} – 6{x^2} – 19x + 84} \right) = 0\\ \to \left[ \begin{array}{l}x = 0\\{x^3} + 4{x^2} – 10{x^2} – 40x + 21x + 84 = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 0\\{x^2}\left( {x + 4} \right) – 10x\left( {x + 4} \right) + 21\left( {x + 4} \right) = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 0\\\left( {x + 4} \right)\left( {{x^2} – 10x + 21} \right) = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 0\\x = – 4\\\left( {x – 3} \right)\left( {x – 7} \right) = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 0\\x = – 4\\x = 3\\x = 7\end{array} \right.\\b)6{x^4} – 5{x^3} – 38{x^2} – 5x + 6 = 0\\ \to 6{x^4} – 2{x^3} – 3{x^3} + {x^2} – 39{x^2} + 13x – 18x + 6 = 0\\ \to 2{x^3}\left( {3x – 1} \right) – {x^2}\left( {3x – 1} \right) – 13x\left( {3x – 1} \right) – 18\left( {3x – 1} \right) = 0\\ \to \left( {3x – 1} \right)\left( {2{x^3} – {x^2} – 13x – 18} \right) = 0\\ \to \left[ \begin{array}{l}x = \dfrac{1}{3}\\2{x^3} – {x^2} – 13x – 18 = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = \dfrac{1}{3}\\x = 3,298162145\end{array} \right.\end{array}\) Bình luận
Đáp án:
a) \(\left[ \begin{array}{l}
x = 0\\
x = – 4\\
x = 3\\
x = 7
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a)({x^2} + 5x + 6)({x^2} – 11x + 30) = 180\\
\to {x^4} – 11{x^3} + 30{x^2} + 5{x^3} – 55{x^2} + 150x + 6{x^2} – 66x + 180 = 180\\
\to {x^4} – 6{x^3} – 19{x^2} + 84x = 0\\
\to x\left( {{x^3} – 6{x^2} – 19x + 84} \right) = 0\\
\to \left[ \begin{array}{l}
x = 0\\
{x^3} + 4{x^2} – 10{x^2} – 40x + 21x + 84 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 0\\
{x^2}\left( {x + 4} \right) – 10x\left( {x + 4} \right) + 21\left( {x + 4} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 0\\
\left( {x + 4} \right)\left( {{x^2} – 10x + 21} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 0\\
x = – 4\\
\left( {x – 3} \right)\left( {x – 7} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 0\\
x = – 4\\
x = 3\\
x = 7
\end{array} \right.\\
b)6{x^4} – 5{x^3} – 38{x^2} – 5x + 6 = 0\\
\to 6{x^4} – 2{x^3} – 3{x^3} + {x^2} – 39{x^2} + 13x – 18x + 6 = 0\\
\to 2{x^3}\left( {3x – 1} \right) – {x^2}\left( {3x – 1} \right) – 13x\left( {3x – 1} \right) – 18\left( {3x – 1} \right) = 0\\
\to \left( {3x – 1} \right)\left( {2{x^3} – {x^2} – 13x – 18} \right) = 0\\
\to \left[ \begin{array}{l}
x = \dfrac{1}{3}\\
2{x^3} – {x^2} – 13x – 18 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{1}{3}\\
x = 3,298162145
\end{array} \right.
\end{array}\)