X^2 – 8x – 20 =0 Tìm giá trị nhỏ nhất A= 4x^2 – 10x + 7 =0 B= -x^2 + 8x- 12 =0 05/09/2021 Bởi Brielle X^2 – 8x – 20 =0 Tìm giá trị nhỏ nhất A= 4x^2 – 10x + 7 =0 B= -x^2 + 8x- 12 =0
Đáp án: \(\begin{array}{l}{A_{\min }} = \frac{3}{4} \Leftrightarrow x = \frac{5}{4}\\{B_{\max }} = 4 \Leftrightarrow x = 4\end{array}\) Giải thích các bước giải: \(\begin{array}{l}A = 4{x^2} – 10x + 7\\A = {\left( {2x} \right)^2} – 2.2x.\frac{5}{2} + \frac{{25}}{4} – \frac{{25}}{4} + 7\\A = {\left( {2x – \frac{5}{2}} \right)^2} + \frac{3}{4}\\Do\,\,{\left( {2x – \frac{5}{2}} \right)^2} \ge 0\,\,\forall x \in R \Rightarrow {\left( {2x – \frac{5}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4}\,\,\forall x \in R\\ \Rightarrow A \ge \frac{3}{4}\,\,\forall x \in R \Rightarrow {A_{\min }} = \frac{3}{4} \Leftrightarrow 2x = \frac{5}{2} \Leftrightarrow x = \frac{5}{4}\\B = – {x^2} + 8x – 12\\B = – \left( {{x^2} – 8x} \right) – 12\\B = – \left( {{x^2} – 2.x.4 + 16} \right) + 16 – 12\\B = – {\left( {x – 4} \right)^2} + 4\\Do\,\,{\left( {x – 4} \right)^2} \ge 0\,\,\forall x \in R \Rightarrow – {\left( {x – 4} \right)^2} \le 0\,\,\forall x \in R\\ \Rightarrow – {\left( {x – 4} \right)^2} + 4 \le 4\,\,\forall x \in R\\ \Rightarrow B \le 4\,\,\,\forall x \in R\\ \Rightarrow {B_{\max }} = 4 \Leftrightarrow x = 4\end{array}\) Bình luận
Đáp án:
\(\begin{array}{l}
{A_{\min }} = \frac{3}{4} \Leftrightarrow x = \frac{5}{4}\\
{B_{\max }} = 4 \Leftrightarrow x = 4
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
A = 4{x^2} – 10x + 7\\
A = {\left( {2x} \right)^2} – 2.2x.\frac{5}{2} + \frac{{25}}{4} – \frac{{25}}{4} + 7\\
A = {\left( {2x – \frac{5}{2}} \right)^2} + \frac{3}{4}\\
Do\,\,{\left( {2x – \frac{5}{2}} \right)^2} \ge 0\,\,\forall x \in R \Rightarrow {\left( {2x – \frac{5}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4}\,\,\forall x \in R\\
\Rightarrow A \ge \frac{3}{4}\,\,\forall x \in R \Rightarrow {A_{\min }} = \frac{3}{4} \Leftrightarrow 2x = \frac{5}{2} \Leftrightarrow x = \frac{5}{4}\\
B = – {x^2} + 8x – 12\\
B = – \left( {{x^2} – 8x} \right) – 12\\
B = – \left( {{x^2} – 2.x.4 + 16} \right) + 16 – 12\\
B = – {\left( {x – 4} \right)^2} + 4\\
Do\,\,{\left( {x – 4} \right)^2} \ge 0\,\,\forall x \in R \Rightarrow – {\left( {x – 4} \right)^2} \le 0\,\,\forall x \in R\\
\Rightarrow – {\left( {x – 4} \right)^2} + 4 \le 4\,\,\forall x \in R\\
\Rightarrow B \le 4\,\,\,\forall x \in R\\
\Rightarrow {B_{\max }} = 4 \Leftrightarrow x = 4
\end{array}\)