Đáp án: \(\left[ \begin{array}{l}x = a + k2\pi \\x = \pi – a + k2\pi \end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}{\sin ^4}x = 2 – {\cos ^2}x\\ \to {\sin ^4}x = 2 – \left( {1 – {{\sin }^2}x} \right)\\ \to {\sin ^4}x = {\sin ^2}x + 1\\ \to {\sin ^4}x – {\sin ^2}x – 1 = 0\\ \to \left[ \begin{array}{l}{\sin ^2}x = \dfrac{{1 + \sqrt 5 }}{2}\\{\sin ^2}x = \dfrac{{1 – \sqrt 5 }}{2}\left( l \right)\end{array} \right.\\ \to \left[ \begin{array}{l}\sin x = \sqrt {\dfrac{{1 + \sqrt 5 }}{2}} \\\sin x = – \sqrt {\dfrac{{1 + \sqrt 5 }}{2}} \left( l \right)\end{array} \right.\\ \to \sin x = \sqrt {\dfrac{{1 + \sqrt 5 }}{2}} \\Đặt:\sin a = \sqrt {\dfrac{{1 + \sqrt 5 }}{2}} \\ \to \sin x = \sin a\\ \to \left[ \begin{array}{l}x = a + k2\pi \\x = \pi – a + k2\pi \end{array} \right.\left( {k \in Z} \right)\end{array}\) Bình luận
Đáp án: Giải thích các bước giải: `2-cos^2x=sin^4x` `<=>2-(1-sin^2x)=(sinx^2)^2` `<=>1+sin^2x-(sin^2x)^2=0` `<=>[1-(sin^2x)^2]+sin^2x=0` `<=>(1-sin^2x)(1+sin^2x)+sin^2x=0` `<=>(cos^2x)(2-cos^2x)+1-cos^2x=0` `<=>2cos^2x-(cos^2x)^2+1-cos^2x=0` `<=>cos^2x-(cos^2x)^2+1=0` Đặt `cos^2x=a` `<=>a-a^2+1=0` `<=>a^2-a-1=0` Delta`=1+4=5` `=>a=(1+sqrt{5})/2` Hoặc `a=(1-sqrt{5})/2` Bình luận
Đáp án:
\(\left[ \begin{array}{l}
x = a + k2\pi \\
x = \pi – a + k2\pi
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
{\sin ^4}x = 2 – {\cos ^2}x\\
\to {\sin ^4}x = 2 – \left( {1 – {{\sin }^2}x} \right)\\
\to {\sin ^4}x = {\sin ^2}x + 1\\
\to {\sin ^4}x – {\sin ^2}x – 1 = 0\\
\to \left[ \begin{array}{l}
{\sin ^2}x = \dfrac{{1 + \sqrt 5 }}{2}\\
{\sin ^2}x = \dfrac{{1 – \sqrt 5 }}{2}\left( l \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
\sin x = \sqrt {\dfrac{{1 + \sqrt 5 }}{2}} \\
\sin x = – \sqrt {\dfrac{{1 + \sqrt 5 }}{2}} \left( l \right)
\end{array} \right.\\
\to \sin x = \sqrt {\dfrac{{1 + \sqrt 5 }}{2}} \\
Đặt:\sin a = \sqrt {\dfrac{{1 + \sqrt 5 }}{2}} \\
\to \sin x = \sin a\\
\to \left[ \begin{array}{l}
x = a + k2\pi \\
x = \pi – a + k2\pi
\end{array} \right.\left( {k \in Z} \right)
\end{array}\)
Đáp án:
Giải thích các bước giải:
`2-cos^2x=sin^4x`
`<=>2-(1-sin^2x)=(sinx^2)^2`
`<=>1+sin^2x-(sin^2x)^2=0`
`<=>[1-(sin^2x)^2]+sin^2x=0`
`<=>(1-sin^2x)(1+sin^2x)+sin^2x=0`
`<=>(cos^2x)(2-cos^2x)+1-cos^2x=0`
`<=>2cos^2x-(cos^2x)^2+1-cos^2x=0`
`<=>cos^2x-(cos^2x)^2+1=0`
Đặt `cos^2x=a`
`<=>a-a^2+1=0`
`<=>a^2-a-1=0`
Delta`=1+4=5`
`=>a=(1+sqrt{5})/2`
Hoặc `a=(1-sqrt{5})/2`