2 đội công nhân làm 2 khối lượng công việc như nhau. Đợi thứ nhất hoàn thành công việc trong 5ngày, đội thứ hai hoàn thành công việc trong 7 ngày. Hỏi mỗi đội có bn công nhân ( năng xuất mỗi đội như nhau). Biết đội 1>đội 2 4 công nhân.
2 đội công nhân làm 2 khối lượng công việc như nhau. Đợi thứ nhất hoàn thành công việc trong 5ngày, đội thứ hai hoàn thành công việc trong 7 ngày. Hỏi mỗi đội có bn công nhân ( năng xuất mỗi đội như nhau). Biết đội 1>đội 2 4 công nhân.
Đáp án:
Vậy đội một có 14 công nhân và đội hai có 10 công nhân
Giải thích các bước giải:
Gọi số công nhân đội một và đội hai lần lượt là a; b (a; b ∈ N*)
Vì số công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch (năng suất như nhau)
Nên 5a = 7b
=> $\dfrac{a}{7}$ = $\dfrac{b}{5}$ và a – b = 4
Áp dụng tính chất dãy tỉ số bằng nhau:
$\dfrac{a}{7}$ = $\dfrac{b}{5}$ = $\dfrac{a-b}{7-5}$ = $\dfrac{4}{2}$ = 2
$\dfrac{a}{7}$ = 2 => a = 2.7 = 14 (nhận)
$\dfrac{b}{5}$ = 2 => b = 2.5 = 10 (nhận)
Vậy đội một có 14 công nhân và đội hai có 10 công nhân
Giải thích các bước giải:
Nhận xét : Trong cùng một khối lượng công việc , số công nhân và thời gian hoàn thành là 2 đại lượng tỉ lệ nghịch.
Đặt công nhân 2 đội lần lượt là a và b (a,b thuộc N*; đơn vị : công nhân)
Do a,b lần lượt tỉ lệ nghịch với 5,7
=> a.5 = b.7=> a/7 = b/5 = a-b / 7-5 = 4 / 2 = 2 (Tc dãy tỉ số = nhau)
=> a=14; b=10