2sin^2 alpha- 3sin alpha -2 =0 tinh tan alpha 17/07/2021 Bởi Margaret 2sin^2 alpha- 3sin alpha -2 =0 tinh tan alpha
Đáp án: $\begin{array}{l}2{\sin ^2}a – 3\sin a – 2 = 0\\ \Rightarrow 2.{\sin ^2}a – 4\sin a + \sin a – 2 = 0\\ \Rightarrow 2\sin a\left( {{\mathop{\rm sina}\nolimits} – 2} \right) + \left( {\sin a – 2} \right) = 0\\ \Rightarrow \left( {\sin a – 2} \right)\left( {2\sin a + 1} \right) = 0\\ \Rightarrow \sin a = – \dfrac{1}{2}\left( {do: – 1 \le \sin a \le 1} \right)\\Do:{\sin ^2}a + {\cos ^2}a = 1\\ \Rightarrow {\cos ^2}a = 1 – \dfrac{1}{4} = \dfrac{3}{4}\\\dfrac{1}{{{{\cos }^2}a}} = {\tan ^2}a + 1\\ \Rightarrow {\tan ^2}a = \dfrac{1}{{{{\cos }^2}a}} – 1 = \dfrac{1}{3}\\ \Rightarrow \left[ \begin{array}{l}\tan a = \dfrac{{\sqrt 3 }}{3}\\\tan a = – \dfrac{{\sqrt 3 }}{3}\end{array} \right.\end{array}$ Bình luận
$2\sin^2\alpha-3\sin\alpha-2=0$ $\Leftrightarrow (\sin \alpha-2)(2\sin\alpha+1)=0$ $\Leftrightarrow \sin \alpha=\dfrac{-1}{2}$ $\dfrac{1}{\sin^2\alpha}=1+\cot^2\alpha$ $\Rightarrow \cot^2\alpha=3$ $\Leftrightarrow \tan^2\alpha=\dfrac{1}{3}$ $\Leftrightarrow \tan \alpha=\pm\dfrac{1}{\sqrt3}$ Bình luận
Đáp án:
$\begin{array}{l}
2{\sin ^2}a – 3\sin a – 2 = 0\\
\Rightarrow 2.{\sin ^2}a – 4\sin a + \sin a – 2 = 0\\
\Rightarrow 2\sin a\left( {{\mathop{\rm sina}\nolimits} – 2} \right) + \left( {\sin a – 2} \right) = 0\\
\Rightarrow \left( {\sin a – 2} \right)\left( {2\sin a + 1} \right) = 0\\
\Rightarrow \sin a = – \dfrac{1}{2}\left( {do: – 1 \le \sin a \le 1} \right)\\
Do:{\sin ^2}a + {\cos ^2}a = 1\\
\Rightarrow {\cos ^2}a = 1 – \dfrac{1}{4} = \dfrac{3}{4}\\
\dfrac{1}{{{{\cos }^2}a}} = {\tan ^2}a + 1\\
\Rightarrow {\tan ^2}a = \dfrac{1}{{{{\cos }^2}a}} – 1 = \dfrac{1}{3}\\
\Rightarrow \left[ \begin{array}{l}
\tan a = \dfrac{{\sqrt 3 }}{3}\\
\tan a = – \dfrac{{\sqrt 3 }}{3}
\end{array} \right.
\end{array}$
$2\sin^2\alpha-3\sin\alpha-2=0$
$\Leftrightarrow (\sin \alpha-2)(2\sin\alpha+1)=0$
$\Leftrightarrow \sin \alpha=\dfrac{-1}{2}$
$\dfrac{1}{\sin^2\alpha}=1+\cot^2\alpha$
$\Rightarrow \cot^2\alpha=3$
$\Leftrightarrow \tan^2\alpha=\dfrac{1}{3}$
$\Leftrightarrow \tan \alpha=\pm\dfrac{1}{\sqrt3}$