$(x+3)^{4}$ – ($x^{2}$+x-6)^2 = 2$(x-2)^{4}$

$(x+3)^{4}$ – ($x^{2}$+x-6)^2 = 2$(x-2)^{4}$

0 bình luận về “$(x+3)^{4}$ – ($x^{2}$+x-6)^2 = 2$(x-2)^{4}$”

  1. Đáp số:

    \[\left[ \begin{array}{l}
    x = 7 + 5\sqrt 2 \\
    x = 7 – 5\sqrt 2 
    \end{array} \right.\]

    Giải thích các bước giải:

    Ta có:

    \(\begin{array}{l}
    {\left( {x + 3} \right)^4} – {\left( {{x^2} + x – 6} \right)^2} = 2{\left( {x – 2} \right)^4}\\
     \Leftrightarrow {\left( {x + 3} \right)^4} – {\left[ {\left( {{x^2} + 3x} \right) – \left( {2x + 6} \right)} \right]^2} – 2{\left( {x – 2} \right)^4} = 0\\
     \Leftrightarrow {\left( {x + 3} \right)^4} – {\left[ {x.\left( {x + 3} \right) – 2\left( {x + 3} \right)} \right]^2} – 2{\left( {x – 2} \right)^4} = 0\\
     \Leftrightarrow {\left( {x + 3} \right)^4} – {\left[ {\left( {x + 3} \right)\left( {x – 2} \right)} \right]^2} – 2.{\left( {x – 2} \right)^4} = 0\\
     \Leftrightarrow {\left( {x + 3} \right)^4} – {\left( {x + 3} \right)^2}{\left( {x – 2} \right)^2} – 2{\left( {x – 2} \right)^4} = 0\\
     \Leftrightarrow \left[ {{{\left( {x + 3} \right)}^4} + {{\left( {x + 3} \right)}^2}{{\left( {x – 2} \right)}^2}} \right] – \left[ {2{{\left( {x + 3} \right)}^2}{{\left( {x – 2} \right)}^2} + 2{{\left( {x – 2} \right)}^4}} \right] = 0\\
     \Leftrightarrow {\left( {x + 3} \right)^2}\left[ {{{\left( {x + 3} \right)}^2} + {{\left( {x – 2} \right)}^2}} \right] – 2{\left( {x – 2} \right)^2}.\left[ {{{\left( {x + 3} \right)}^2} + {{\left( {x – 2} \right)}^2}} \right] = 0\\
     \Leftrightarrow \left[ {{{\left( {x + 3} \right)}^2} + {{\left( {x – 2} \right)}^2}} \right]\left[ {{{\left( {x + 3} \right)}^2} – 2.{{\left( {x – 2} \right)}^2}} \right] = 0\\
     \Leftrightarrow \left[ {{x^2} + 6x + 9 + {x^2} – 4x + 4} \right].\left[ {\left( {{x^2} + 6x + 9} \right) – 2.\left( {{x^2} – 4x + 4} \right)} \right] = 0\\
     \Leftrightarrow \left( {2{x^2} + 2x + 13} \right).\left( { – {x^2} + 14x + 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    2{x^2} + 2x + 13 = 0\\
     – {x^2} + 14x + 1 = 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    {x^2} + \left( {{x^2} + 2x + 1} \right) + 12 = 0\\
    {x^2} – 14x – 1 = 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    {x^2} + {\left( {x + 1} \right)^2} + 12 = 0\,\,\,\,\,\,\,\,\,\left( {vn} \right)\\
    {x^2} – 2.7.x + 49 = 50
    \end{array} \right.\\
     \Leftrightarrow {\left( {x – 7} \right)^2} = 50\\
     \Leftrightarrow \left[ \begin{array}{l}
    x – 7 = 5\sqrt 2 \\
    x – 7 =  – 5\sqrt 2 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 7 + 5\sqrt 2 \\
    x = 7 – 5\sqrt 2 
    \end{array} \right.
    \end{array}\)

    Bình luận

Viết một bình luận