x + 3$\sqrt{x+2}$ = 0 x + $\sqrt{x – 1}$ = 13

x + 3$\sqrt{x+2}$ = 0
x + $\sqrt{x – 1}$ = 13

0 bình luận về “x + 3$\sqrt{x+2}$ = 0 x + $\sqrt{x – 1}$ = 13”

  1. Đáp án:

     

    Giải thích các bước giải:

     `x+3\sqrt{x+2}=0`

    `ĐK: x \ge -2`

    `⇔ x+2-2+3\sqrt{x+2}=0`

    Đặt `\sqrt{x+2}=t\ (t \ge 0)`

    `⇔ t^2+3t-2=0`

    `⇔` \(\left[ \begin{array}{l}t_1=\dfrac{-3+\sqrt{17}}{2}\ (TM)\\x=-\dfrac{-3-\sqrt{17}}{2}\ (Loại)\end{array} \right.\) 

    `t=\frac{-3+\sqrt{17}}{2}⇔ \sqrt{x+2}=\frac{-3+\sqrt{17}}{2}`

    `⇔ x+2=\frac{13-3\sqrt{17}}{2}`

    `⇔ x=\frac{9-3\sqrt{17}}{2}\ (TM)`

    Vậy `S={\frac{9-3\sqrt{17}}{2}}`

    b) `x+\sqrt{x-1}=13`

    `ĐK: x \ge 1`

    `⇔ x-13+\sqrt{x-1}=0`

    Đặt `\sqrt{x-1}=t\ (t \ge 0)`

    `⇔ t^2+t-12=0`

    `⇔` \(\left[ \begin{array}{l}t_1=3\ (TM)\\t_2=-4\ (Loại)\end{array} \right.\) 

    `t=3⇔ \sqrt{x-1}=3`

    `⇔ x-1=9`

    `⇔ x=10\ (TM)`

    Vậy `S={10}`

    Bình luận
  2. ` a) ` ` x + 3\sqrt{x + 2} = 0 `

    ` <=> 3\sqrt{x + 2} = -x `

    ` <=> 9(x + 2) = x^2 `

    ` <=> 9x + 18 – x^2 = 0 `

    ` <=> -x^2 + 9x + 18 = 0 `

    ` <=> x^2 – 9x – 18 = 0 `

    ` <=> x = \frac{-(-9) ± \sqrt{(-9)^{2} – 4 . 1 . (-18)}}{2.1} `

    ` <=> x = \frac{9±\sqrt{153}}{2} `

    ` <=> x = \frac{9±3\sqrt{17}}{2} `

    * Nếu ` x = \frac{9 + 3\sqrt{17}}{2} `

    ` <=> \frac{9 + 3\sqrt{17}}{2} + 3\sqrt{\frac{9+3\sqrt{17}}{2} + 2} = 0 `

    ` <=> 21,36932 = 0 ` `(vô` `lí)`

    * Nếu ` x = \frac{9 – 3\sqrt{17}}{2} `

    ` <=> \frac{9 + 3\sqrt{17}}{2} + 3\sqrt{\frac{9+3\sqrt{17}}{2} + 2} = 0 `

    ` <=> 0 = 0 ` `(tm)`

    ` => x = \frac{9 – 3\sqrt{17}}{2} `

    ` b) ` ` x + \sqrt{x – 1} = 13 `

    ` <=> \sqrt{x – 1} = 13 – x `

    ` <=> x – 1 = 169 – 26x + x^{2} `

    ` <=> -x^{2} + 27x – 170 = 0 `

    ` <=> x^{2} – 27x + 170 = 0 `

    ` <=> x^{2} – 10x – 17x + 170 = 0 `

    ` <=> (x – 10)(x – 17) = 0 `

    ` <=> ` \(\left[ \begin{array}{l}x=10\\x=17\end{array} \right.\) 

    * Nếu ` x = 10 `

    ` <=> 10 + \sqrt{10 – 1} = 13 `

    ` <=> 13 = 13 ` `(tm) `

    * Nếu ` x = 17 `

    ` <=> 17 + \sqrt{17 – 1} = 13 `

    ` <=> 21 = 13 ` `(vô` `lí)` 

    ` => x = 10 `

    Bình luận

Viết một bình luận