3sin3x- $\sqrt[]{3}$ cos9x =1+4 $sin^{3}$3x

3sin3x- $\sqrt[]{3}$ cos9x =1+4 $sin^{3}$3x

0 bình luận về “3sin3x- $\sqrt[]{3}$ cos9x =1+4 $sin^{3}$3x”

  1. Đáp án: \(\left[ \begin{array}{l}x=\dfrac{π}{18}+k \dfrac{2π}{9}\\x=\dfrac{7π}{54} + k \dfrac{2π}{9}\end{array} \right.\) 

     

    Giải thích các bước giải:

    ` 3sin3x – \sqrt3 cos9x = 1 +4sin^3 3x`

    `<=> (3sin3x – 4sin^3 3x) – \sqrt3 cos 9x = 1`

    `<=> sin9x – \sqrt3 cos9x = 1`

    `<=> 1/2 sin9x – (\sqrt3)/2 cos 9x = 1/2`

    `<=> sin9x . cos π/3 – cos 9x . sin π/3 = sin π/6`

    `<=> sin ( 9x – π/3) = sin π/6`

    `<=>` \(\left[ \begin{array}{l}9x- \dfrac{π}{3} = \dfrac{π}{6} + k2π\\9x-\dfrac{π}{3}=π -\dfrac{π}{6} + k2π\end{array} \right.\) 

    `<=>` \(\left[ \begin{array}{l}x=\dfrac{π}{18}+k \dfrac{2π}{9}\\x=\dfrac{7π}{54} + k \dfrac{2π}{9}\end{array} \right.\) 

    Bình luận

Viết một bình luận