`x . ( 4/( 1 . 2 ) + 4/( 2 . 3 ) + 4/( 3 . 4 ) + … + 4/( 99 . 100 ) ) = 33/25` `⇔ x . 4 . ( 1/( 1 . 2 ) + 1/( 2 . 3 ) + 1/( 3 . 4 ) + … + 1/( 99 . 100 ) ) = 33/25` `⇔ x . 4 . ( 1/1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 + … + 1/99 – 1/100 ) = 33/25` `⇔ x . 4 . ( 1 – 1/100 ) = 33/25` `⇔ x . 4 . 99/100 = 33/25` `⇔ x . 99/25 = 33/25` `⇔ x = 33/25 : 99/25` `⇔ x = 1/3` Vậy , `x = 1/3 .` Bình luận
Đáp án: `x=1/3` Giải thích các bước giải: `x.[4/1.2+4/2.3+4/3.4+…+4/99.100]=33/25` `<=>x.[4.(1-1/2+1/2-1/3+1/3-1/4+…+1/99-1/100)]=33/25` `<=>x.[4.(1-1/100)]=33/25` `<=>x.[4 . 99/100]=33/25` `<=>x. 99/25=33/25` `<=>x=33/25÷99/25` `<=>x=33/25xx25/99` `<=>x=1/3` Bình luận
`x . ( 4/( 1 . 2 ) + 4/( 2 . 3 ) + 4/( 3 . 4 ) + … + 4/( 99 . 100 ) ) = 33/25`
`⇔ x . 4 . ( 1/( 1 . 2 ) + 1/( 2 . 3 ) + 1/( 3 . 4 ) + … + 1/( 99 . 100 ) ) = 33/25`
`⇔ x . 4 . ( 1/1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 + … + 1/99 – 1/100 ) = 33/25`
`⇔ x . 4 . ( 1 – 1/100 ) = 33/25`
`⇔ x . 4 . 99/100 = 33/25`
`⇔ x . 99/25 = 33/25`
`⇔ x = 33/25 : 99/25`
`⇔ x = 1/3`
Vậy , `x = 1/3 .`
Đáp án:
`x=1/3`
Giải thích các bước giải:
`x.[4/1.2+4/2.3+4/3.4+…+4/99.100]=33/25`
`<=>x.[4.(1-1/2+1/2-1/3+1/3-1/4+…+1/99-1/100)]=33/25`
`<=>x.[4.(1-1/100)]=33/25`
`<=>x.[4 . 99/100]=33/25`
`<=>x. 99/25=33/25`
`<=>x=33/25÷99/25`
`<=>x=33/25xx25/99`
`<=>x=1/3`