-4x^2/3-x tìm tất cả các giá trị nguyên của x để A có giá trị nguyên 05/10/2021 Bởi Margaret -4x^2/3-x tìm tất cả các giá trị nguyên của x để A có giá trị nguyên
Đáp án: $\begin{array}{l}A = \frac{{ – 4{x^2}}}{{3 – x}}\\ = \frac{{4{x^2}}}{{x – 3}}\\ = \frac{{4{x^2} – 12x + 12x – 36 + 36}}{{x – 3}}\\ = \frac{{4x\left( {x – 3} \right) + 12\left( {x – 3} \right) + 36}}{{x – 3}}\\ = 4x + 12 + \frac{{36}}{{x – 3}}\\A \in Z\\ \Rightarrow \frac{{36}}{{x – 3}} \in Z\\ \Rightarrow \left( {x – 3} \right) \in \left\{ \begin{array}{l} – 36; – 18; – 12; – 9; – 4; – 3; – 2; – 1;\\1;2;3;4;9;12;18;36\end{array} \right\}\\ \Rightarrow x \in \left\{ \begin{array}{l} – 33; – 15; – 9; – 6; – 1;2;\\4;5;6;7;12;15;21;39\end{array} \right\}\end{array}$ Bình luận
Đáp án: `x∈\{-33;-15;-9;-6;-3;-1;0;1;2;39;21;15;12;9;7;6;5;4\}` Giải thích các bước giải: `A=\frac{-4x^2}{3-x}` `=\frac{4x^2}{-(3-x)}` `=\frac{4x^2}{x-3}` `=\frac{4x^2-12x+12x-36+36}{x-3}` `=\frac{4x(x-3)+12(x-3)+36}{x-3}` `=4x+12+\frac{36}{x-3}` Để `A∈Z` `⇒4x+12+\frac{36}{x-3}` `⇒\frac{36}{x-3}∈Z` `⇒36\vdots (x-3)` `⇒(x-3)∈Ư(36)=\{±1;±2;±3;±4;±6;±9;±12;±18;±36\}` `⇒x∈\{-33;-15;-9;-6;-3;-1;0;1;2;39;21;15;12;9;7;6;5;4\}` Bình luận
Đáp án:
$\begin{array}{l}
A = \frac{{ – 4{x^2}}}{{3 – x}}\\
= \frac{{4{x^2}}}{{x – 3}}\\
= \frac{{4{x^2} – 12x + 12x – 36 + 36}}{{x – 3}}\\
= \frac{{4x\left( {x – 3} \right) + 12\left( {x – 3} \right) + 36}}{{x – 3}}\\
= 4x + 12 + \frac{{36}}{{x – 3}}\\
A \in Z\\
\Rightarrow \frac{{36}}{{x – 3}} \in Z\\
\Rightarrow \left( {x – 3} \right) \in \left\{ \begin{array}{l}
– 36; – 18; – 12; – 9; – 4; – 3; – 2; – 1;\\
1;2;3;4;9;12;18;36
\end{array} \right\}\\
\Rightarrow x \in \left\{ \begin{array}{l}
– 33; – 15; – 9; – 6; – 1;2;\\
4;5;6;7;12;15;21;39
\end{array} \right\}
\end{array}$
Đáp án:
`x∈\{-33;-15;-9;-6;-3;-1;0;1;2;39;21;15;12;9;7;6;5;4\}`
Giải thích các bước giải:
`A=\frac{-4x^2}{3-x}`
`=\frac{4x^2}{-(3-x)}`
`=\frac{4x^2}{x-3}`
`=\frac{4x^2-12x+12x-36+36}{x-3}`
`=\frac{4x(x-3)+12(x-3)+36}{x-3}`
`=4x+12+\frac{36}{x-3}`
Để `A∈Z`
`⇒4x+12+\frac{36}{x-3}`
`⇒\frac{36}{x-3}∈Z`
`⇒36\vdots (x-3)`
`⇒(x-3)∈Ư(36)=\{±1;±2;±3;±4;±6;±9;±12;±18;±36\}`
`⇒x∈\{-33;-15;-9;-6;-3;-1;0;1;2;39;21;15;12;9;7;6;5;4\}`