-7x^2+4/x^3+1=5/x^2-x+1-1/x+1 x-2/x+2-3/x-2=2(x-11)/x^2-4 x+5/x-1-x+1/x-3=-8/x^2-4x+3 06/11/2021 Bởi Emery -7x^2+4/x^3+1=5/x^2-x+1-1/x+1 x-2/x+2-3/x-2=2(x-11)/x^2-4 x+5/x-1-x+1/x-3=-8/x^2-4x+3
Đáp án: c) Phương trình vô nghiệm Giải thích các bước giải: \(\begin{array}{l}a)DK:x \ne – 1\\\dfrac{{ – 7{x^2} + 4}}{{{x^3} + 1}} = \dfrac{5}{{{x^2} – x + 1}} – \dfrac{1}{{x + 1}}\\ \to \dfrac{{ – 7{x^2} + 4}}{{{x^3} + 1}} = \dfrac{{5\left( {x + 1} \right) – {x^2} + x – 1}}{{{x^3} + 1}}\\ \to – 7{x^2} + 4 = 5x + 5 – {x^2} + x – 1\\ \to 6{x^2} + 6x = 0\\ \to 6x\left( {x + 1} \right) = 0\\ \to \left[ \begin{array}{l}x = 0\left( {TM} \right)\\x = – 1\left( l \right)\end{array} \right.\\b)DK:x \ne \pm 2\\\dfrac{{x – 2}}{{x + 2}} – \dfrac{3}{{x – 2}} = \dfrac{{2x – 22}}{{{x^2} – 4}}\\ \to \dfrac{{{{\left( {x – 2} \right)}^2} – 3\left( {x + 2} \right) – 2x + 22}}{{\left( {x – 2} \right)\left( {x + 2} \right)}} = 0\\ \to \dfrac{{{x^2} – 4x + 4 – 3x – 6 – 2x + 22}}{{\left( {x – 2} \right)\left( {x + 2} \right)}} = 0\\ \to {x^2} – 9x + 20 = 0\\ \to {x^2} – 4x – 5x + 20 = 0\\ \to x\left( {x – 4} \right) – 5\left( {x – 4} \right) = 0\\ \to \left( {x – 4} \right)\left( {x – 5} \right) = 0\\ \to \left[ \begin{array}{l}x = 4\\x = 5\end{array} \right.\\c)DK:x \ne \left\{ {1;3} \right\}\\\dfrac{{x + 5}}{{x – 1}} – \dfrac{{x + 1}}{{x – 3}} = \dfrac{{ – 8}}{{{x^2} – 4x + 3}}\\ \to \dfrac{{\left( {x + 5} \right)\left( {x – 3} \right) – \left( {x + 1} \right)\left( {x – 1} \right) + 8}}{{\left( {x – 1} \right)\left( {x – 3} \right)}} = 0\\ \to \dfrac{{{x^2} + 2x – 15 – {x^2} + 1 + 8}}{{\left( {x – 1} \right)\left( {x – 3} \right)}} = 0\\ \to 2x – 6 = 0\\ \to x = 3\left( l \right)\end{array}\) ⇒ Phương trình vô nghiệm Bình luận
Đáp án:
c) Phương trình vô nghiệm
Giải thích các bước giải:
\(\begin{array}{l}
a)DK:x \ne – 1\\
\dfrac{{ – 7{x^2} + 4}}{{{x^3} + 1}} = \dfrac{5}{{{x^2} – x + 1}} – \dfrac{1}{{x + 1}}\\
\to \dfrac{{ – 7{x^2} + 4}}{{{x^3} + 1}} = \dfrac{{5\left( {x + 1} \right) – {x^2} + x – 1}}{{{x^3} + 1}}\\
\to – 7{x^2} + 4 = 5x + 5 – {x^2} + x – 1\\
\to 6{x^2} + 6x = 0\\
\to 6x\left( {x + 1} \right) = 0\\
\to \left[ \begin{array}{l}
x = 0\left( {TM} \right)\\
x = – 1\left( l \right)
\end{array} \right.\\
b)DK:x \ne \pm 2\\
\dfrac{{x – 2}}{{x + 2}} – \dfrac{3}{{x – 2}} = \dfrac{{2x – 22}}{{{x^2} – 4}}\\
\to \dfrac{{{{\left( {x – 2} \right)}^2} – 3\left( {x + 2} \right) – 2x + 22}}{{\left( {x – 2} \right)\left( {x + 2} \right)}} = 0\\
\to \dfrac{{{x^2} – 4x + 4 – 3x – 6 – 2x + 22}}{{\left( {x – 2} \right)\left( {x + 2} \right)}} = 0\\
\to {x^2} – 9x + 20 = 0\\
\to {x^2} – 4x – 5x + 20 = 0\\
\to x\left( {x – 4} \right) – 5\left( {x – 4} \right) = 0\\
\to \left( {x – 4} \right)\left( {x – 5} \right) = 0\\
\to \left[ \begin{array}{l}
x = 4\\
x = 5
\end{array} \right.\\
c)DK:x \ne \left\{ {1;3} \right\}\\
\dfrac{{x + 5}}{{x – 1}} – \dfrac{{x + 1}}{{x – 3}} = \dfrac{{ – 8}}{{{x^2} – 4x + 3}}\\
\to \dfrac{{\left( {x + 5} \right)\left( {x – 3} \right) – \left( {x + 1} \right)\left( {x – 1} \right) + 8}}{{\left( {x – 1} \right)\left( {x – 3} \right)}} = 0\\
\to \dfrac{{{x^2} + 2x – 15 – {x^2} + 1 + 8}}{{\left( {x – 1} \right)\left( {x – 3} \right)}} = 0\\
\to 2x – 6 = 0\\
\to x = 3\left( l \right)
\end{array}\)
⇒ Phương trình vô nghiệm