8 + 88 + 888 + 8888 + ……. + 88..888 ( 88 chữ số 8 ) Tính tổng 02/11/2021 Bởi Kaylee 8 + 88 + 888 + 8888 + ……. + 88..888 ( 88 chữ số 8 ) Tính tổng
Đáp án : `A=125000…0012,25` `(125000…0012,25` có `85` chữ số `0)` Giải thích các bước giải : `A=8+88+888+8888+…+88…888` `(88…888` có `88` chữ số `8)` `<=>A=9/8(9+99+999+9999+…+99…999)` `(99…999` có `99` chữ số `9)` `<=>A=9/8(10-1+10^2-1+10^3-1+10^4-1+…+10^(88)-1)` `<=>A=9/8[(10+10^2+10^3+10^4+…+10^(88))-(1+1+1+1+…+1)]` `<=>A=9/8[(10+100+1000+10000+…+10…000)-88]` `<=>A=9/8(111..110-88)` `<=>A=9/8×111…122` `(111…122` có `87` chữ số `1)` `<=>A=9/8×(111…111+11)` `(111…111` có `89` chữ số `1)` `<=>A=9/8×111…111+9/8×11` `(111…111` có `89` chữ số `1)` `<=>A=12,375+12499…9999,875` `(12499…9999,875` có `85` chữ số `9)` `<=>A=125000…0012,25` `(125000…0012,25` có `85` chữ số `0)` Vậy `A=125000…0012,25` `(125000…0012,25` có `85` chữ số `0)` Bình luận
Đáp án: 8888……..89584“95 chu so 8” Giải thích các bước giải: 8 + 88 + 888 + 8888 + …. + 88…888 “88 chu so 8” = 8.( 1+ 11 + 111 + 1111 + … + 11….111 “88 chu so 1”) = 8.( 9 + 99 + 999 + 9999 + … + 99…999 “88 chu so 9”) = 8.[ ( $10-1$ ) + ($10^{2}-1$) + ($10^{3}-1$ ) + ($10^{4}-1$) + …+( $10^{88}-1$) = 8.[(10 + $10^{2}$ + $10^{3}$ + $10^{4}$ + … + $10^{88}$ ) + (1 + 1 + 1 + 1+ … + 1 “88 so 1”) ” = 8.[ 1111…1110 “88 chu so 1”+ 88 ] = 8. 1111…..1198 “87 chu so 1” = 8888…89584 CHUC_BAN_HOC_TOT Xin cau tra loi hay nhat!!! #MINA Bình luận
Đáp án :
`A=125000…0012,25` `(125000…0012,25` có `85` chữ số `0)`
Giải thích các bước giải :
`A=8+88+888+8888+…+88…888` `(88…888` có `88` chữ số `8)`
`<=>A=9/8(9+99+999+9999+…+99…999)` `(99…999` có `99` chữ số `9)`
`<=>A=9/8(10-1+10^2-1+10^3-1+10^4-1+…+10^(88)-1)`
`<=>A=9/8[(10+10^2+10^3+10^4+…+10^(88))-(1+1+1+1+…+1)]`
`<=>A=9/8[(10+100+1000+10000+…+10…000)-88]`
`<=>A=9/8(111..110-88)`
`<=>A=9/8×111…122` `(111…122` có `87` chữ số `1)`
`<=>A=9/8×(111…111+11)` `(111…111` có `89` chữ số `1)`
`<=>A=9/8×111…111+9/8×11` `(111…111` có `89` chữ số `1)`
`<=>A=12,375+12499…9999,875` `(12499…9999,875` có `85` chữ số `9)`
`<=>A=125000…0012,25` `(125000…0012,25` có `85` chữ số `0)`
Vậy `A=125000…0012,25` `(125000…0012,25` có `85` chữ số `0)`
Đáp án:
8888……..89584“95 chu so 8”
Giải thích các bước giải:
8 + 88 + 888 + 8888 + …. + 88…888 “88 chu so 8”
= 8.( 1+ 11 + 111 + 1111 + … + 11….111 “88 chu so 1”)
= 8.( 9 + 99 + 999 + 9999 + … + 99…999 “88 chu so 9”)
= 8.[ ( $10-1$ ) + ($10^{2}-1$) + ($10^{3}-1$ ) + ($10^{4}-1$) + …+( $10^{88}-1$)
= 8.[(10 + $10^{2}$ + $10^{3}$ + $10^{4}$ + … + $10^{88}$ ) + (1 + 1 + 1 + 1+ … + 1 “88 so 1”)
”
= 8.[ 1111…1110 “88 chu so 1”+ 88 ]
= 8. 1111…..1198 “87 chu so 1”
= 8888…89584
CHUC_BAN_HOC_TOT
Xin cau tra loi hay nhat!!!
#MINA