(x+9)/10+(x+10)/9=9/(x+10)+10/(x+9) ( Giải hộ giúp mình với ạ)

(x+9)/10+(x+10)/9=9/(x+10)+10/(x+9)
( Giải hộ giúp mình với ạ)

0 bình luận về “(x+9)/10+(x+10)/9=9/(x+10)+10/(x+9) ( Giải hộ giúp mình với ạ)”

  1. Đáp án: $x\in\{-19,0,-\dfrac{181}{19}\}$

    Giải thích các bước giải:

    ĐKXĐ: $x\ne -9,-10$

    Ta có :

    $\dfrac{x+9}{10}+\dfrac{x+10}{9}=\dfrac{9}{x+10}+\dfrac{10}{x+9}$ 

    $\to (\dfrac{x+9}{10}-\dfrac{9}{x+10})+(\dfrac{x+10}{9}-\dfrac{10}{x+9})=0$

    $\to \dfrac{(x+9)(x+10)-9\cdot 10}{10(x+10)}+\dfrac{(x+10)(x+9)-9\cdot 10}{9(x+9)}=0$

    $\to \dfrac{x^2+19x}{10(x+10)}+\dfrac{x^2+19x}{9(x+9)}=0$

    $\to (x^2+19x)(\dfrac{1}{10(x+10)}+\dfrac{1}{9(x+9)})=0$

    $\to x^2+19x=0\to x(x+19)=0\to x\in\{-19,0\}$

    Hoặc $\dfrac{1}{10(x+10)}+\dfrac{1}{9(x+9)}=0$

    $\to \dfrac{1}{10(x+10)}=-\dfrac{1}{9(x+9)}$

    $\to 10(x+10)=-9(x+9)$

    $\to 10x+100=-9x-81$

    $\to 19x=-181$

    $\to x=-\dfrac{181}{19}$

    Bình luận

Viết một bình luận