9x^2 -1=(3x+1)(2x-3) 27x^2(x+3)-12(x^2 +3x)=0 15/07/2021 Bởi Rylee 9x^2 -1=(3x+1)(2x-3) 27x^2(x+3)-12(x^2 +3x)=0
9x²-1=(3x+1)(2x-3) ⇔(3x-1)(3x+1)-(3x+1)(2x-3)=0 ⇔(3x+1)(3x-1-2x+3)=0 ⇔(3x+1)(x+2)=0 ⇔\(\left[ \begin{array}{l}3x+1=0\\x+2=0\end{array} \right.\) =>\(\left[ \begin{array}{l}x=-1/3\\x=-2\end{array} \right.\) Vậy S={-1/3;-2} 27x²(x+3)-12(x² +3x)=0 ⇔27x²(x+3)-12x(x+3)=0 ⇔(x+3)(27x²-12x)=0 ⇔(x+3)3x(9x-4)=0 ⇔x+3=0; 3x=0 hoặc 9x-4=0 ⇔x=-3; x=0; x=4/9 Vậy S=Ơ-3;0;4/9} Bình luận
Đáp án: Giải thích các bước giải: a. $9x^{2}$ – 1 = ( 3x + 1 )( 2x – 3 ) <=> ( 3x +1 )(3x + 1 ) – ( 3x + 1 )( 2x – 3 ) = 0 <=> ( 3x + 1 )( 3x – 1 – 2x + 3 ) = 0 <=> ( 3x + 1 ) ( x + 2 ) = 0 <=> \(\left[ \begin{array}{l}3x + 1 = 0 \\x + 2 = 0\end{array} \right.\) <=> \(\left[ \begin{array}{l}x=\frac{-1}{3}\\x=-2\end{array} \right.\) S = { $\frac{-1}{3}$ ; -2 } b. $27x^{2}$ ( x + 3 ) – 12 ( $x^{2}$ + 3x ) = 0 <=> $27x^{2}$ ( x + 3 ) – 12x ( x + 3 ) = 0 <=> ( x + 3 )( $27x^{2}$ – 12x ) = 0 <=> 3x( x + 3 )( 9x + 4 ) = 0 <=> 3x = 0 ; x + 3 = 0 và 9x + 4 = 0 <=> x = 0 ; x = -3 và x = $\frac{-4}{9}$ S = { 0; -3; $\frac{-4}{9}$ } Bình luận
9x²-1=(3x+1)(2x-3)
⇔(3x-1)(3x+1)-(3x+1)(2x-3)=0
⇔(3x+1)(3x-1-2x+3)=0
⇔(3x+1)(x+2)=0
⇔\(\left[ \begin{array}{l}3x+1=0\\x+2=0\end{array} \right.\) =>\(\left[ \begin{array}{l}x=-1/3\\x=-2\end{array} \right.\)
Vậy S={-1/3;-2}
27x²(x+3)-12(x² +3x)=0
⇔27x²(x+3)-12x(x+3)=0
⇔(x+3)(27x²-12x)=0
⇔(x+3)3x(9x-4)=0
⇔x+3=0; 3x=0 hoặc 9x-4=0
⇔x=-3; x=0; x=4/9
Vậy S=Ơ-3;0;4/9}
Đáp án:
Giải thích các bước giải:
a. $9x^{2}$ – 1 = ( 3x + 1 )( 2x – 3 )
<=> ( 3x +1 )(3x + 1 ) – ( 3x + 1 )( 2x – 3 ) = 0
<=> ( 3x + 1 )( 3x – 1 – 2x + 3 ) = 0
<=> ( 3x + 1 ) ( x + 2 ) = 0
<=> \(\left[ \begin{array}{l}3x + 1 = 0 \\x + 2 = 0\end{array} \right.\)
<=> \(\left[ \begin{array}{l}x=\frac{-1}{3}\\x=-2\end{array} \right.\)
S = { $\frac{-1}{3}$ ; -2 }
b. $27x^{2}$ ( x + 3 ) – 12 ( $x^{2}$ + 3x ) = 0
<=> $27x^{2}$ ( x + 3 ) – 12x ( x + 3 ) = 0
<=> ( x + 3 )( $27x^{2}$ – 12x ) = 0
<=> 3x( x + 3 )( 9x + 4 ) = 0
<=> 3x = 0 ; x + 3 = 0 và 9x + 4 = 0
<=> x = 0 ; x = -3 và x = $\frac{-4}{9}$
S = { 0; -3; $\frac{-4}{9}$ }