9^3.7-27^2.3 _____________ 3^4.2+9^2.5^2 3^2.64^2-12^2.16^2.19^0 __________________________ 3+6+9+…+96+99 12/11/2021 Bởi Margaret 9^3.7-27^2.3 _____________ 3^4.2+9^2.5^2 3^2.64^2-12^2.16^2.19^0 __________________________ 3+6+9+…+96+99
Giải thích các bước giải: a.Ta có: $A=\dfrac{9^3\cdot 7-27^2\cdot 3}{3^4\cdot 2+9^2\cdot 5^2}$ $\to A=\dfrac{(3^2)^3\cdot 7-(3^3)^2\cdot 3}{3^4\cdot 2+(3^2)^2\cdot 5^2}$ $\to A=\dfrac{3^{2\cdot 3}\cdot 7-3^{3\cdot 2}\cdot 3}{3^4\cdot 2+3^{2\cdot 2}\cdot 5^2}$ $\to A=\dfrac{3^{6}\cdot 7-3^{6}\cdot 3}{3^4\cdot 2+3^{4}\cdot 5^2}$ $\to A=\dfrac{3^{6}\cdot (7-3)}{3^4\cdot (2+5^2)}$ $\to A=\dfrac{3^{6}\cdot 4}{3^4\cdot 27}$ $\to A=\dfrac{3^{6}\cdot 4}{3^4\cdot 3^3}$ $\to A=\dfrac{3^{6}\cdot 4}{3^{4+3}}$ $\to A=\dfrac{3^{6}\cdot 4}{3^{7}}$ $\to A=\dfrac{4}{3}$ b.Ta có: $B=\dfrac{3^2\cdot 64^2-12^2\cdot 16^2\cdot 19^0}{3+6+9+…+96+99}$ $\to B=\dfrac{3^2\cdot (2^6)^2-(3\cdot 2^2)^2\cdot (2^4)^2\cdot 1}{3(1+2+3+…+32+33)}$ $\to B=\dfrac{3^2\cdot 2^{12}-3^2\cdot 2^4\cdot 2^8}{3\cdot \dfrac{33\cdot (33+1)}{2}}$ $\to B=\dfrac{3^2\cdot 2^{12}-3^2\cdot 2^{12}}{3\cdot \dfrac{33\cdot (33+1)}{2}}$ $\to B=\dfrac{0}{3\cdot \dfrac{33\cdot (33+1)}{2}}$ $\to B=0$ Bình luận
Câu `1` : `9^3 . 7 – 27^2 . 3` `=(3^2)^3 . 7 – (3^3)^2 . 3` `= 3^6 . 7 – 3^6 . 3` `= 3^6(7 – 3)` `= 3^6 . 4` `=729 . 4` `=2916` Câu `2` : `3^4 . 2 + 9^2 . 5^2` `= 3^4 . 2 + (3^2)^2 . 5^2` `= 3^4 . 2 + 3^4 . 25` `= 3^4(2+25)` `= 3^4 . 27` `= 3^4 . 3^3` `= 3^7` Câu `3` : `3^2 . 64^2 – 12^2 . 16^2 . 19^0` `= 3^2 . 64^2 – 12^2 . 16^2 . 1` `= (3 . 64)^2 – (12 . 16)^2` `=192^2 – 192^2` `= 0` Câu `4` : Dãy trên có số số hạng là : `(99 – 3) :3 +1 = 33` ( số hạng ) Tổng của dãy trên là : `(99+3) × 33 : 2 =1683` Bình luận
Giải thích các bước giải:
a.Ta có:
$A=\dfrac{9^3\cdot 7-27^2\cdot 3}{3^4\cdot 2+9^2\cdot 5^2}$
$\to A=\dfrac{(3^2)^3\cdot 7-(3^3)^2\cdot 3}{3^4\cdot 2+(3^2)^2\cdot 5^2}$
$\to A=\dfrac{3^{2\cdot 3}\cdot 7-3^{3\cdot 2}\cdot 3}{3^4\cdot 2+3^{2\cdot 2}\cdot 5^2}$
$\to A=\dfrac{3^{6}\cdot 7-3^{6}\cdot 3}{3^4\cdot 2+3^{4}\cdot 5^2}$
$\to A=\dfrac{3^{6}\cdot (7-3)}{3^4\cdot (2+5^2)}$
$\to A=\dfrac{3^{6}\cdot 4}{3^4\cdot 27}$
$\to A=\dfrac{3^{6}\cdot 4}{3^4\cdot 3^3}$
$\to A=\dfrac{3^{6}\cdot 4}{3^{4+3}}$
$\to A=\dfrac{3^{6}\cdot 4}{3^{7}}$
$\to A=\dfrac{4}{3}$
b.Ta có:
$B=\dfrac{3^2\cdot 64^2-12^2\cdot 16^2\cdot 19^0}{3+6+9+…+96+99}$
$\to B=\dfrac{3^2\cdot (2^6)^2-(3\cdot 2^2)^2\cdot (2^4)^2\cdot 1}{3(1+2+3+…+32+33)}$
$\to B=\dfrac{3^2\cdot 2^{12}-3^2\cdot 2^4\cdot 2^8}{3\cdot \dfrac{33\cdot (33+1)}{2}}$
$\to B=\dfrac{3^2\cdot 2^{12}-3^2\cdot 2^{12}}{3\cdot \dfrac{33\cdot (33+1)}{2}}$
$\to B=\dfrac{0}{3\cdot \dfrac{33\cdot (33+1)}{2}}$
$\to B=0$
Câu `1` :
`9^3 . 7 – 27^2 . 3`
`=(3^2)^3 . 7 – (3^3)^2 . 3`
`= 3^6 . 7 – 3^6 . 3`
`= 3^6(7 – 3)`
`= 3^6 . 4`
`=729 . 4`
`=2916`
Câu `2` :
`3^4 . 2 + 9^2 . 5^2`
`= 3^4 . 2 + (3^2)^2 . 5^2`
`= 3^4 . 2 + 3^4 . 25`
`= 3^4(2+25)`
`= 3^4 . 27`
`= 3^4 . 3^3`
`= 3^7`
Câu `3` :
`3^2 . 64^2 – 12^2 . 16^2 . 19^0`
`= 3^2 . 64^2 – 12^2 . 16^2 . 1`
`= (3 . 64)^2 – (12 . 16)^2`
`=192^2 – 192^2`
`= 0`
Câu `4` :
Dãy trên có số số hạng là :
`(99 – 3) :3 +1 = 33` ( số hạng )
Tổng của dãy trên là :
`(99+3) × 33 : 2 =1683`