A=1/2+1/2×2+1/2×2×2+…+1/2×2×2×2×2×2×2×2×2×2

A=1/2+1/2×2+1/2×2×2+…+1/2×2×2×2×2×2×2×2×2×2

0 bình luận về “A=1/2+1/2×2+1/2×2×2+…+1/2×2×2×2×2×2×2×2×2×2”

  1. Đáp án:

     

    Giải thích các bước giải:

     A=1/2+1/2^2+1/2^3+…..+1/2^10

    2 A=1+1/2+…..+1/2^9

    2A-A=(1+…..+1/2^9)

             -(1/2+1/2^2+…..+1/2^10)

    A.     =1-1/2^10

    Bình luận
  2. Bạn tham khảo :

    $A = \dfrac{1}{2} + \dfrac{1}{2.2} + \dfrac{1}{2.2.2} + … + \dfrac{1}{2 .2.2.2.2.2.2.2.2.2}$
    $A = \dfrac{1}{2} +\dfrac{1}{2^2}+\dfrac{1}{2^3} + …+\dfrac{1}{2^{10}}$

    $\dfrac{1}{2}A =  \dfrac{1}{2^2}+\dfrac{1}{2^3} +\dfrac{1}{2^4} …+\dfrac{1}{2^{11}}$

    $\dfrac{1}{2}A – A =( \dfrac{1}{2^2}+\dfrac{1}{2^3} +\dfrac{1}{2^4} …+\dfrac{1}{2^{11}}) – ( \dfrac{1}{2} +\dfrac{1}{2^2}+\dfrac{1}{2^3} + …+\dfrac{1}{2^{10}})$

    $ \dfrac{-1}{2}A =    \dfrac{1}{2^{11}} – \dfrac{1}{2}$ 

    $A =  \dfrac{1}{2^{11}} – \dfrac{1}{2} + \dfrac{-1}{2}$

    $A = \dfrac{1}{2^{11}}  –    (-1)$   

    $A = \dfrac{1}{2^{11}} +1$

    Bình luận

Viết một bình luận