A=1/2+1/2^2+1/2^3+…+1/2^2015+1/2^2016 CTR A<1

A=1/2+1/2^2+1/2^3+…+1/2^2015+1/2^2016
CTR A<1

0 bình luận về “A=1/2+1/2^2+1/2^3+…+1/2^2015+1/2^2016 CTR A<1”

  1. Ta có

    $A = \dfrac{1}{2} + \dfrac{1}{2^2} + \cdots + \dfrac{1}{2^{2016}}$

    Suy ra

    $\dfrac{1}{2} A = \dfrac{1}{2^2} + \dfrac{1}{2^3} + \cdots + \dfrac{1}{2^{2017}}$

    Khi đó

    $A – \dfrac{1}{2} A = \left( \dfrac{1}{2} + \dfrac{1}{2^2} + \cdots + \dfrac{1}{2^{2016}} \right) – \left( \dfrac{1}{2^2} + \dfrac{1}{2^3} + \cdots + \dfrac{1}{2^{2017}} \right)$

    Suy ra

    $\dfrac{1}{2} A = \dfrac{1}{2} – \dfrac{1}{2^{2017}}$

    hay

    $A = 1 – \dfrac{1}{2^{2016}}< 1$

    Vậy $A < 1$

    Bình luận
  2. `A=1/2+1/2^2+1/2^3+…+1/2^2015+1/2^2016`

    `⇒2A=1+1/2+1/2^2+…+1/2^2014+1/2^2015`

    `⇒2A-A=(1+1/2+1/2^2+…+1/2^2014+1/2^2015)-(1/2+1/2^2+1/2^3+…+1/2^2015+1/2^2016)`

    `⇒A=1-1/2^2016<1`

    `⇒A<1` `(đpcm)`

    Bình luận

Viết một bình luận