A=1+a2+…aN tính A (n thuộc N) a2 là a mũ 2 nha 11/07/2021 Bởi Reagan A=1+a2+…aN tính A (n thuộc N) a2 là a mũ 2 nha
Đáp án: $ A = \dfrac{a^{n+1} – 1}{a-1}$. Giải thích các bước giải: $A = 1 + a + a^2 + …. + a^{n}$ $⇔ aA = a.(1+a+a^2 + … + a^{n})$ $⇔ aA = a.1 + a.a + a.a^2 + … + a.a^{n}$ $⇔ aA = a + a^2 + a^3 + … + a^{n+1}$ $⇔ aA – A = (a + a^2 + a^3 + … + a^{n+1})$ $-( 1 + a + a^2 + …. + a^{n})$ $⇔ A.(a-1) = a^{n+1} – 1$ $⇔ A = \dfrac{a^{n+1} – 1}{a-1}$. Bình luận
Đáp án:a=an + 1 -1 trên a-1
Giải thích các bước giải:a.a-1=an +1-1
Đáp án: $ A = \dfrac{a^{n+1} – 1}{a-1}$.
Giải thích các bước giải:
$A = 1 + a + a^2 + …. + a^{n}$
$⇔ aA = a.(1+a+a^2 + … + a^{n})$
$⇔ aA = a.1 + a.a + a.a^2 + … + a.a^{n}$
$⇔ aA = a + a^2 + a^3 + … + a^{n+1}$
$⇔ aA – A = (a + a^2 + a^3 + … + a^{n+1})$
$-( 1 + a + a^2 + …. + a^{n})$
$⇔ A.(a-1) = a^{n+1} – 1$
$⇔ A = \dfrac{a^{n+1} – 1}{a-1}$.