{█((a-1)x+y=a@6x+ay=4)┤ tìm giá trị a để hệ phương trình có nghiệm thỏa x^2+y^2+xy<4 13/07/2021 Bởi Kennedy {█((a-1)x+y=a@6x+ay=4)┤ tìm giá trị a để hệ phương trình có nghiệm thỏa x^2+y^2+xy<4
Giải thích các bước giải: \(\begin{array}{l}\left\{ \begin{array}{l}\left( {a – 1} \right)x + y = a\\6x + ay = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = a – \left( {a – 1} \right)x\\6x + a\left( {a – \left( {a – 1} \right)} \right)x = 4\end{array} \right.\\ \Rightarrow \left( {{a^2} – a – 6} \right)x = {a^2} – 4\\ \Rightarrow x = \dfrac{{{a^2} – 4}}{{{a^2} – a – 6}} = \dfrac{{\left( {a – 2} \right)\left( {a + 2} \right)}}{{\left( {a + 2} \right)\left( {a – 3} \right)}} = \dfrac{{a – 2}}{{a – 3}}\left( {a \ne – 2;a \ne 3} \right)\\ \Rightarrow y = a – \left( {a – 1} \right)x = a – \left( {a – 1} \right).\dfrac{{a – 2}}{{a – 3}} = \dfrac{{{a^2} – 3a – \left( {{a^2} – 3a + 2} \right)}}{{a – 3}} = \dfrac{{ – 2}}{{a – 3}}\\{x^2} + {y^2} + xy < 4\\ \Leftrightarrow \dfrac{{{{\left( {a – 2} \right)}^2}}}{{{{\left( {a – 3} \right)}^2}}} + \dfrac{4}{{{{\left( {a – 3} \right)}^2}}} – \dfrac{{2a – 4}}{{{{\left( {a – 3} \right)}^2}}} < 4\\ \Leftrightarrow \dfrac{{{a^2} – 6a + 12}}{{{{\left( {a – 3} \right)}^2}}} – 4 < 0\\ \Leftrightarrow \dfrac{{{a^2} – 6a + 12 – 4{a^2} + 24a – 36}}{{{{\left( {a – 3} \right)}^2}}} < 0\\ \Rightarrow – 3{a^2} + 18a – 24 < 0\\ \Leftrightarrow 3{a^2} – 18a + 24 > 0\\ \Leftrightarrow 3\left( {a – 2} \right)\left( {a – 4} \right) > 0\\ \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a – 2 > 0\\a – 4 > 0\end{array} \right.\\\left\{ \begin{array}{l}a – 2 < 0\\a – 4 < 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a > 4\\a < 2\end{array} \right.\end{array}\) Bình luận
Giải thích các bước giải:
\(\begin{array}{l}
\left\{ \begin{array}{l}
\left( {a – 1} \right)x + y = a\\
6x + ay = 4
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
y = a – \left( {a – 1} \right)x\\
6x + a\left( {a – \left( {a – 1} \right)} \right)x = 4
\end{array} \right.\\
\Rightarrow \left( {{a^2} – a – 6} \right)x = {a^2} – 4\\
\Rightarrow x = \dfrac{{{a^2} – 4}}{{{a^2} – a – 6}} = \dfrac{{\left( {a – 2} \right)\left( {a + 2} \right)}}{{\left( {a + 2} \right)\left( {a – 3} \right)}} = \dfrac{{a – 2}}{{a – 3}}\left( {a \ne – 2;a \ne 3} \right)\\
\Rightarrow y = a – \left( {a – 1} \right)x = a – \left( {a – 1} \right).\dfrac{{a – 2}}{{a – 3}} = \dfrac{{{a^2} – 3a – \left( {{a^2} – 3a + 2} \right)}}{{a – 3}} = \dfrac{{ – 2}}{{a – 3}}\\
{x^2} + {y^2} + xy < 4\\
\Leftrightarrow \dfrac{{{{\left( {a – 2} \right)}^2}}}{{{{\left( {a – 3} \right)}^2}}} + \dfrac{4}{{{{\left( {a – 3} \right)}^2}}} – \dfrac{{2a – 4}}{{{{\left( {a – 3} \right)}^2}}} < 4\\
\Leftrightarrow \dfrac{{{a^2} – 6a + 12}}{{{{\left( {a – 3} \right)}^2}}} – 4 < 0\\
\Leftrightarrow \dfrac{{{a^2} – 6a + 12 – 4{a^2} + 24a – 36}}{{{{\left( {a – 3} \right)}^2}}} < 0\\
\Rightarrow – 3{a^2} + 18a – 24 < 0\\
\Leftrightarrow 3{a^2} – 18a + 24 > 0\\
\Leftrightarrow 3\left( {a – 2} \right)\left( {a – 4} \right) > 0\\
\Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
a – 2 > 0\\
a – 4 > 0
\end{array} \right.\\
\left\{ \begin{array}{l}
a – 2 < 0\\
a – 4 < 0
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
a > 4\\
a < 2
\end{array} \right.
\end{array}\)