a,/2x-1/+5/y+2 =0 B, /2x-4/+/x+y-4/=0 C, /x-1/+/x ×y +5/=0 C, /x-y+2/ +/4-y/=0

a,/2x-1/+5/y+2 =0
B, /2x-4/+/x+y-4/=0
C, /x-1/+/x ×y +5/=0
C, /x-y+2/ +/4-y/=0

0 bình luận về “a,/2x-1/+5/y+2 =0 B, /2x-4/+/x+y-4/=0 C, /x-1/+/x ×y +5/=0 C, /x-y+2/ +/4-y/=0”

  1. Đáp án:

    $\\$

    `a,`

    `|2x – 1| + 5 |y + 2| = 0`

    Do : \(\left\{ \begin{array}{l}|2x-1|\geqslant 0∀x\\|y+2|\geqslant 0∀y\end{array} \right.\)

    `↔` \(\left\{ \begin{array}{l}|2x-1|\geqslant 0∀x\\5|y+2|\geqslant 0∀y\end{array} \right.\)

    $↔ |2x-1| +  5 |y + 2| \geqslant 0 ∀ x,y$

    Dấu “`=`” xảy ra khi :

    `↔` \(\left\{ \begin{array}{l}2x-1=0\\y+2=0\end{array} \right.\)

    `↔` \(\left\{ \begin{array}{l}2x=1\\y=-2\end{array} \right.\)

    `↔` \(\left\{ \begin{array}{l}x=\dfrac{1}{2}\\y=-2\end{array} \right.\)

    Vậy `(x;y) = (1/2; -2)`

    $\\$

    `b,`

    `|2x-4| + |x + y – 4| = 0`

    Do : \(\left\{ \begin{array}{l}|2x-4|\geqslant 0∀x\\|x+y-4|\geqslant 0∀y\end{array} \right.\)

    $↔ |2x-4| + |x  +y-4| \geqslant 0 ∀ x,y$

    Dấu “`=`” xảy ra khi :

    `↔` \(\left\{ \begin{array}{l}2x-4=0\\x+y-4=0\end{array} \right.\)

    `↔` \(\left\{ \begin{array}{l}2x=4\\x+y=4\end{array} \right.\)

    `↔` \(\left\{ \begin{array}{l}x=2\\2+y=4\end{array} \right.\)

    `↔` \(\left\{ \begin{array}{l}x=2\\y=2\end{array} \right.\)

    Vậy `(x;y)=(2;2)`

    $\\$

    `c,`

    `|x-1| + |xy  + 5| = 0`

    Do : \(\left\{ \begin{array}{l}|x-1|\geqslant 0∀x\\|xy+5|\geqslant 0∀y\end{array} \right.\)

    $↔ |x-1| + |xy + 5| \geqslant 0∀x,y$

    Dấu “`=`” xảy ra khi :

    `↔` \(\left\{ \begin{array}{l}x-1=0\\xy+5=0\end{array} \right.\)

    `↔` \(\left\{ \begin{array}{l}x=1\\1.y=-5\end{array} \right.\)

    `↔` \(\left\{ \begin{array}{l}x=1\\y=-5\end{array} \right.\)

    Vậy `(x;y) = (1;-5)`

    $\\$

    `d,`

    `|x-y+2| + |4-y| = 0`

    Do : \(\left\{ \begin{array}{l}|x-y+2|\geqslant 0∀x\\|4-y|\geqslant 0∀y\end{array} \right.\)

    $↔ |x-y+2| + |4-y| \geqslant 0 ∀ x,y$

    Dấu “`=`” xảy ra khi :

    `↔` \(\left\{ \begin{array}{l}x-y+2=0\\4-y=0\end{array} \right.\)

    `↔` \(\left\{ \begin{array}{l}x-4=-2\\y=4\end{array} \right.\)

    `↔` \(\left\{ \begin{array}{l}x=2\\y=4\end{array} \right.\)

    Vậy `(x;y) = (2;4)`

    Bình luận
  2. Đáp án:

    `a)|2x-1|+5|y+2|=0`

    Vì \(\begin{cases}|2x-1| \ge 0\\5|y+2 \ge 0\\\end{cases}\)

    `=>|2x-1|+5|y+2|>=0`

    Dấu “=” xảy ra khi:\(\begin{cases}2x-1=0\\5(y+2)=0\\\end{cases}\)

    `<=>` \(\begin{cases}2x=1\\y+2=0\\\end{cases}\)

    `<=>` \(\begin{cases}x=\dfrac12\y=-2\\\end{cases}\)

    `b)|2x-4|+|x+y-4|=0`

    Vì \(\begin{cases}|2x-4| \ge 0\\|x+y-4| \ge 0\\\end{cases}\)

    `=>|2x-4|+|x+y-4|>=0`

    Dấu “=” xảy ra khi:\(\begin{cases}2x-4=0\\x+y-4=0\\\end{cases}\)

    `<=>` \(\begin{cases}2x=4\\y=4-x\\\end{cases}\)

    `<=>` \(\begin{cases}x=2\\y=2\\\end{cases}\)

    `c)|x-1|+|xy+5|=0`

    Vì \(\begin{cases}|x-1| \ge 0\\|xy+5| \ge 0\\\end{cases}\)

    `=>|x-1|+|xy+5|>=0`

    Dấu “=” xảy ra khi:\(\begin{cases}x-1=0\\xy+5=0\\\end{cases}\)

    `<=>` \(\begin{cases}x=1\\y=-5\\\end{cases}\)

    `d)|x-y+2|+|4-y|=0`

    Vì \(\begin{cases}|x-y+2| \ge 0\\|4-y| \ge 0\\\end{cases}\)

    `=>|x-y+2|+|4-y|>=0`

    Dấu “=” xảy ra khi:\(\begin{cases}x-y+2=0\\4-y=0\\\end{cases}\)

    `<=>` \(\begin{cases}y=4\\x=y-2=2\\\end{cases}\)

    Bình luận

Viết một bình luận