A = (2^10.2^13-2^21.20)/2^24 B = (1+ 1/1.3 )(1+ 1/2.4 )…(1+ 1/2016.2018 ) 22/09/2021 Bởi Parker A = (2^10.2^13-2^21.20)/2^24 B = (1+ 1/1.3 )(1+ 1/2.4 )…(1+ 1/2016.2018 )
Đáp án: Giải thích các bước giải: B = (1+ 1/1.3 )(1+ 1/2.4 )…(1+ 1/2016.2018 ) $= (1.3+1. \frac{1}{3})….(\frac{2016.2018+ 1}{2016.2018})$ $= (2. 2. \frac{1}{3})…(\frac{2017. 2017}{2016. 2018})$ $= (2…2017).(\frac{2…..2017}{(1.2….2016).(3…2018)}$ $= \frac{2017.2}{2018}$ $= \frac{2017. 2}{1006. 2}$ $= \frac{2017}{1006}$ Bình luận
Đáp án:
Giải thích các bước giải:
B = (1+ 1/1.3 )(1+ 1/2.4 )…(1+ 1/2016.2018 )
$= (1.3+1. \frac{1}{3})….(\frac{2016.2018+ 1}{2016.2018})$
$= (2. 2. \frac{1}{3})…(\frac{2017. 2017}{2016. 2018})$
$= (2…2017).(\frac{2…..2017}{(1.2….2016).(3…2018)}$
$= \frac{2017.2}{2018}$
$= \frac{2017. 2}{1006. 2}$
$= \frac{2017}{1006}$