a, x^2-3x+2=0 b, -x^2+5x-6=0 c, 4x^2-12x+5=0 d, 2x^2+5x+3=0 e, x-12+4x=25+2x-1 f, x+2x+3x-19= 3x+5 g, 7-(2x+4)= -(x+4) Giúo mk vs

a, x^2-3x+2=0
b, -x^2+5x-6=0
c, 4x^2-12x+5=0
d, 2x^2+5x+3=0
e, x-12+4x=25+2x-1
f, x+2x+3x-19= 3x+5
g, 7-(2x+4)= -(x+4)
Giúo mk vs

0 bình luận về “a, x^2-3x+2=0 b, -x^2+5x-6=0 c, 4x^2-12x+5=0 d, 2x^2+5x+3=0 e, x-12+4x=25+2x-1 f, x+2x+3x-19= 3x+5 g, 7-(2x+4)= -(x+4) Giúo mk vs”

  1. Đáp án:

    Bên dưới

    Giải thích các bước giải:

    a) $x^2-3x+2=0$

    ⇔ $x^2-x-2x+2=0$

    ⇔ $x(x-1)-2(x-1)=0$

    ⇔ $(x-1)(x-2)=0$

    ⇔ \(\left[ \begin{array}{l}x-1=0\\x-2=0\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}x=1\\x=2\end{array} \right.\)

    Vậy $x=1$ hoặc $x=2$

    b) $-x^2+5x-6=0$

    ⇔ $-x^2+6x-x-6=0$

    ⇔ $x(-x+6)-(x+6)=0$

    ⇔ $(-x+6)(x-1)=0$

    ⇔ \(\left[ \begin{array}{l}-x+6=0\\x-1=0\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}-x=-6\\x=1\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}x=6\\x=1\end{array} \right.\)

    Vậy $x=6$ hoặc $x=1$

    c) $4x^2-12x+5=0$

    ⇔ $4x^2-2x-10x+5=0$

    ⇔ $2x(2x-1)-5(2x-1)=0$

    ⇔ $(2x-1)(2x-5)=0$

    ⇔ \(\left[ \begin{array}{l}2x-1=0\\2x-5=0\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}x=\frac{1}{2}\\x=\frac{5}{2}\end{array} \right.\)

    Vậy $x=\frac{1}{2}$ hoặc $x=\frac{5}{2}$

    d) $2x^2+5x+3=0$

    ⇔ $2x^2+2x+3x+3=0$

    ⇔ $2x(x+1)+3(x+1)=0$

    ⇔ $(x+1)(2x+3)=0$

    ⇔ \(\left[ \begin{array}{l}x+1=0\\2x+3=0\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}x=-1\\x=\frac{-3}{2}\end{array} \right.\)

    Vậy $x=-1$ hoặc $x=\frac{-3}{2}$

    e) $x-12+4x=25+2x-1$

    ⇔ $x+4x-2x=25-1+12$

    ⇔ $3x=36$

    ⇔ $x=12$

    Vậy $x=12$

    f) $x+2x+3x-19=3x+5$

    ⇔ $x+2x+3x-3x=5+19$

    ⇔ $3x=24$

    ⇔ $x=8$

    Vậy $x=8$

    g) $7-(2x+4)=-(x+4)$

    ⇔ $7-2x-4=-x-4$

    ⇔ $3-2x=-x-4$

    ⇔ $-2x+x=-4-3$

    ⇔ $-x=-7$

    ⇔ $x=7$

    Vậy $x=7$

    Bình luận

Viết một bình luận