a(x)=x+x^2+x^3+… +x^99+x^100 tại x= 1/2

a(x)=x+x^2+x^3+… +x^99+x^100 tại x= 1/2

0 bình luận về “a(x)=x+x^2+x^3+… +x^99+x^100 tại x= 1/2”

  1. Cho `x= 1/2`

    `=> A(1/2) = 1/2 + 1/2^2 + 1/2^3 +…+1/2^99 + 1/2^100`

    `=>1/2 A(1/2)= 1/2 ( 1/2 + 1/2^2 +1/2^3 +…+1/2^100)`

    `=> 1/2 A(1/2) = 1/2^2 +1/2^3+ 1/2^4 +…+1/2^101`

    `=> A(1/2) – 1/2A (1/2) = 1/2 + 1/2^2+ 1/2^3 +…+1/2^100 – 1/2^2 – 1/2^3 – 1/2^3-…-1/2^101`

    `=> 1/2A(1/2)= 1/2 – 1/2^101`

    `=> A(1/2) = (1/2 -1/2^101):1/2`

    `=> A(1/2) = (1/2 -1/2^101) . 2`

    `=> A(1/2) = 1 – 1/2^100`

    Vậy `A(1/2) = 1 – 1/2^100`

     

    Bình luận
  2. Đáp án :

    Với `x = 1/2`

    `⇔ A (1/2) = 1/2 + (1/2)^2 + (1/2)^3 + … + (1/2)^{99} + (1/2)^{100}`

    `⇔ A(1/2) = 1/2 + 1/2^2 + 1/2^3 + … + 1/2^{99} + 1/2^{100}`

    `⇔ 1/2 A (1/2) = 1/2 (1/2 + 1/2^2 + 1/2^3+…+1/2^{99} + 1/2^{100})`

    `⇔ 1/2 A (1/2) = 1/2^2 + 1/2^3 + 1/2^4 + … + 1/2^{100} + 1/2^{101} (1)`

    $\\$

    Đặt `B = 1/2^2 + 1/2^3 + 1/2^4 + … + 1/2^{100} + 1/2^{101}`

    `⇔ 2 B = 1/2 + 1/2^2 + 1/2^3 + … + 1/2^{99} + 1/2^{100}`

    `⇔ 2B – B = (1/2 + 1/2^2 + 1/2^3 + … + 1/2^{99} + 1/2^{100}) – (1/2^2 + 1/2^3 + 1/2^4 + … + 1/2^{100} + 1/2^{101})`

    `⇔ B = 1/2 – 1/2^{101} (2)`

    $\\$
    Thay `(2)` vào `(1)` ta được :

    `1/2 A (1/2) = 1/2 – 1/2^{101}`

    `⇔ A(1/2) = (1/2 – 1/2^{101} ) : 1/2`

    `⇔ A (1/2) = 1 – 1/2^{100}`

    Vậy `A (1/2) = 1 – 1/2^{100}`

     

    Bình luận

Viết một bình luận