Cho `x= 1/2` `=> A(1/2) = 1/2 + 1/2^2 + 1/2^3 +…+1/2^99 + 1/2^100` `=>1/2 A(1/2)= 1/2 ( 1/2 + 1/2^2 +1/2^3 +…+1/2^100)` `=> 1/2 A(1/2) = 1/2^2 +1/2^3+ 1/2^4 +…+1/2^101` `=> A(1/2) – 1/2A (1/2) = 1/2 + 1/2^2+ 1/2^3 +…+1/2^100 – 1/2^2 – 1/2^3 – 1/2^3-…-1/2^101` `=> 1/2A(1/2)= 1/2 – 1/2^101` `=> A(1/2) = (1/2 -1/2^101):1/2` `=> A(1/2) = (1/2 -1/2^101) . 2` `=> A(1/2) = 1 – 1/2^100` Vậy `A(1/2) = 1 – 1/2^100` Bình luận
Đáp án : Với `x = 1/2` `⇔ A (1/2) = 1/2 + (1/2)^2 + (1/2)^3 + … + (1/2)^{99} + (1/2)^{100}` `⇔ A(1/2) = 1/2 + 1/2^2 + 1/2^3 + … + 1/2^{99} + 1/2^{100}` `⇔ 1/2 A (1/2) = 1/2 (1/2 + 1/2^2 + 1/2^3+…+1/2^{99} + 1/2^{100})` `⇔ 1/2 A (1/2) = 1/2^2 + 1/2^3 + 1/2^4 + … + 1/2^{100} + 1/2^{101} (1)` $\\$ Đặt `B = 1/2^2 + 1/2^3 + 1/2^4 + … + 1/2^{100} + 1/2^{101}` `⇔ 2 B = 1/2 + 1/2^2 + 1/2^3 + … + 1/2^{99} + 1/2^{100}` `⇔ 2B – B = (1/2 + 1/2^2 + 1/2^3 + … + 1/2^{99} + 1/2^{100}) – (1/2^2 + 1/2^3 + 1/2^4 + … + 1/2^{100} + 1/2^{101})` `⇔ B = 1/2 – 1/2^{101} (2)` $\\$Thay `(2)` vào `(1)` ta được : `1/2 A (1/2) = 1/2 – 1/2^{101}` `⇔ A(1/2) = (1/2 – 1/2^{101} ) : 1/2` `⇔ A (1/2) = 1 – 1/2^{100}` Vậy `A (1/2) = 1 – 1/2^{100}` Bình luận
Cho `x= 1/2`
`=> A(1/2) = 1/2 + 1/2^2 + 1/2^3 +…+1/2^99 + 1/2^100`
`=>1/2 A(1/2)= 1/2 ( 1/2 + 1/2^2 +1/2^3 +…+1/2^100)`
`=> 1/2 A(1/2) = 1/2^2 +1/2^3+ 1/2^4 +…+1/2^101`
`=> A(1/2) – 1/2A (1/2) = 1/2 + 1/2^2+ 1/2^3 +…+1/2^100 – 1/2^2 – 1/2^3 – 1/2^3-…-1/2^101`
`=> 1/2A(1/2)= 1/2 – 1/2^101`
`=> A(1/2) = (1/2 -1/2^101):1/2`
`=> A(1/2) = (1/2 -1/2^101) . 2`
`=> A(1/2) = 1 – 1/2^100`
Vậy `A(1/2) = 1 – 1/2^100`
Đáp án :
Với `x = 1/2`
`⇔ A (1/2) = 1/2 + (1/2)^2 + (1/2)^3 + … + (1/2)^{99} + (1/2)^{100}`
`⇔ A(1/2) = 1/2 + 1/2^2 + 1/2^3 + … + 1/2^{99} + 1/2^{100}`
`⇔ 1/2 A (1/2) = 1/2 (1/2 + 1/2^2 + 1/2^3+…+1/2^{99} + 1/2^{100})`
`⇔ 1/2 A (1/2) = 1/2^2 + 1/2^3 + 1/2^4 + … + 1/2^{100} + 1/2^{101} (1)`
$\\$
Đặt `B = 1/2^2 + 1/2^3 + 1/2^4 + … + 1/2^{100} + 1/2^{101}`
`⇔ 2 B = 1/2 + 1/2^2 + 1/2^3 + … + 1/2^{99} + 1/2^{100}`
`⇔ 2B – B = (1/2 + 1/2^2 + 1/2^3 + … + 1/2^{99} + 1/2^{100}) – (1/2^2 + 1/2^3 + 1/2^4 + … + 1/2^{100} + 1/2^{101})`
`⇔ B = 1/2 – 1/2^{101} (2)`
$\\$
Thay `(2)` vào `(1)` ta được :
`1/2 A (1/2) = 1/2 – 1/2^{101}`
`⇔ A(1/2) = (1/2 – 1/2^{101} ) : 1/2`
`⇔ A (1/2) = 1 – 1/2^{100}`
Vậy `A (1/2) = 1 – 1/2^{100}`