A=7/3+11/3 mũ2+15/ 3mũ3+….+2019/3 mũ504

A=7/3+11/3 mũ2+15/ 3mũ3+….+2019/3 mũ504

0 bình luận về “A=7/3+11/3 mũ2+15/ 3mũ3+….+2019/3 mũ504”

  1. Đáp án: $A=\dfrac12(9-\dfrac{675}{3^{503}})$

    Giải thích các bước giải:

    Ta có:

    $A=\dfrac73+\dfrac{11}{3^2}+\dfrac{15}{3^3}+….+\dfrac{2019}{3^{504}}$

    $\to 3A=7+\dfrac{11}{3}+\dfrac{15}{3^2}+….+\dfrac{2019}{3^{503}}$

    $\to 3A-A=7+\dfrac{4}{3}+\dfrac{4}{3^2}+….+\dfrac{4}{3^{503}}-\dfrac{2019}{3^{504}}$

    $\to 2A=7+4(\dfrac{1}{3}+\dfrac{1}{3^2}+….+\dfrac{1}{3^{503}})-\dfrac{2019}{3^{504}}$

    Mà $B=\dfrac{1}{3}+\dfrac{1}{3^2}+….+\dfrac{1}{3^{503}}$

    $\to 3B=1+\dfrac{1}{3}+….+\dfrac{1}{3^{502}}$

    $\to 3B-B=1-\dfrac{1}{3^{503}}$

    $\to 2B=1-\dfrac{1}{3^{503}}$

    $\to B=\dfrac12(1-\dfrac{1}{3^{503}})$

    $\to 2A=7+4\cdot \dfrac12(1-\dfrac{1}{3^{503}})-\dfrac{2019}{3^{504}}$

    $\to 2A=7+2-\dfrac{2}{3^{503}}-\dfrac{2019}{3^{504}}$

    $\to 2A=9-\dfrac{2}{3^{503}}-\dfrac{673}{3^{503}}$

    $\to 2A=9-\dfrac{675}{3^{503}}$

    $\to A=\dfrac12(9-\dfrac{675}{3^{503}})$

    Bình luận

Viết một bình luận