A= 8x^2-4x+2/8x^3+1 tìm các giá trị của x sao cho A<1 02/10/2021 Bởi Caroline A= 8x^2-4x+2/8x^3+1 tìm các giá trị của x sao cho A<1
Đáp án: \(\left[ \begin{array}{l}x > \dfrac{1}{2}\\x < – \dfrac{1}{2}\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}DK:x \ne – 1\\A < 1\\ \to \dfrac{{8{x^2} – 4x + 2}}{{8{x^3} + 1}} < 1\\ \to \dfrac{{8{x^2} – 4x + 2}}{{8{x^3} + 1}} – 1 < 0\\ \to \dfrac{{ – 8{x^3} + 8{x^2} – 4x + 1}}{{\left( {2x + 1} \right)\left( {4{x^2} – 2x + 1} \right)}} < 0\\ \to \dfrac{{\left( {1 – 2x} \right)\left( {4{x^2} – 2x + 1} \right)}}{{\left( {2x + 1} \right)\left( {4{x^2} – 2x + 1} \right)}} < 0\\ \to \dfrac{{1 – 2x}}{{2x + 1}} < 0\\ \to \left[ \begin{array}{l}\left\{ \begin{array}{l}1 – 2x > 0\\2x + 1 < 0\end{array} \right.\\\left\{ \begin{array}{l}1 – 2x < 0\\2x + 1 > 0\end{array} \right.\end{array} \right. \to \left[ \begin{array}{l}\left\{ \begin{array}{l}\dfrac{1}{2} > x\\x < – \dfrac{1}{2}\end{array} \right.\\\left\{ \begin{array}{l}x > \dfrac{1}{2}\\x > – \dfrac{1}{2}\end{array} \right.\end{array} \right.\\ \to \left[ \begin{array}{l}x > \dfrac{1}{2}\\x < – \dfrac{1}{2}\end{array} \right.\end{array}\) Bình luận
Đáp án:
\(\left[ \begin{array}{l}
x > \dfrac{1}{2}\\
x < – \dfrac{1}{2}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ne – 1\\
A < 1\\
\to \dfrac{{8{x^2} – 4x + 2}}{{8{x^3} + 1}} < 1\\
\to \dfrac{{8{x^2} – 4x + 2}}{{8{x^3} + 1}} – 1 < 0\\
\to \dfrac{{ – 8{x^3} + 8{x^2} – 4x + 1}}{{\left( {2x + 1} \right)\left( {4{x^2} – 2x + 1} \right)}} < 0\\
\to \dfrac{{\left( {1 – 2x} \right)\left( {4{x^2} – 2x + 1} \right)}}{{\left( {2x + 1} \right)\left( {4{x^2} – 2x + 1} \right)}} < 0\\
\to \dfrac{{1 – 2x}}{{2x + 1}} < 0\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
1 – 2x > 0\\
2x + 1 < 0
\end{array} \right.\\
\left\{ \begin{array}{l}
1 – 2x < 0\\
2x + 1 > 0
\end{array} \right.
\end{array} \right. \to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
\dfrac{1}{2} > x\\
x < – \dfrac{1}{2}
\end{array} \right.\\
\left\{ \begin{array}{l}
x > \dfrac{1}{2}\\
x > – \dfrac{1}{2}
\end{array} \right.
\end{array} \right.\\
\to \left[ \begin{array}{l}
x > \dfrac{1}{2}\\
x < – \dfrac{1}{2}
\end{array} \right.
\end{array}\)