a)A=1/1.3+1/3.5+1/5.7+…+1/19.21 b)B=1/99-1/99.98-1/98.97-1/97.96-1/3.2-1/2.1

a)A=1/1.3+1/3.5+1/5.7+…+1/19.21
b)B=1/99-1/99.98-1/98.97-1/97.96-1/3.2-1/2.1

0 bình luận về “a)A=1/1.3+1/3.5+1/5.7+…+1/19.21 b)B=1/99-1/99.98-1/98.97-1/97.96-1/3.2-1/2.1”

  1. a, 

    Ta có:

    A= 1/1.3 + 1/3.5 + …..+ 1/5.7 +……+ 1/19.21

    2.A = 2/1.3 + 2/3.5 + 2/5.7 +…+ 2/19.21

    2.A=  1- 1/3+ 1/3- 1/5+ 1/5- 1/7+…………+ 1/19 – 1/21

    2.A= 1- 1/21

    2.A = 20/21

    A= 20/21 : 2

    A = 10/21

    b, 

    B = 1/99 – 1/99.98 – 1/98.97 – ………….- 1/2.1

       = 1/99 – ( 1/1.2 + 1/2.3 +…………..+ 1/98.99]

        = 1/99 – ( 1- 1/2+ 1/2 – 1/3+ …………..+ 1/98 – 1/99]

       = 1/99 – ( 1- 1/99]

        = 1/99 – 98/88

        = -97/99

    ~ Học tốt!~

     

    Bình luận
  2. Đáp án: A = $\frac{10}{21}$ 

                  B = $\frac{-97}{99}$

    Giải thích các bước giải:

    a ) A = $\frac{1}{1.3}$ + $\frac{1}{3.5}$ + $\frac{1}{5.7}$ + ….. + $\frac{1}{19.21}$ 

    2A = $\frac{2}{1.3}$ + $\frac{2}{3.5}$ + $\frac{2}{5.7}$ + ….. + $\frac{2}{19.21}$ 

    2A = 1 – $\frac{1}{3}$ + $\frac{1}{3}$ – $\frac{1}{5}$ + $\frac{1}{5}$ – $\frac{1}{7}$ +   ….. + $\frac{1}{19}$ –  $\frac{1}{21}$ 

    2A = 1 – $\frac{1}{21}$ 

    2A = $\frac{20}{21}$ 

    A = $\frac{20}{21}$ : 2

    A = $\frac{10}{21}$ 

    b ) B = $\frac{1}{99}$ – $\frac{1}{99.98}$ – $\frac{1}{98.97}$ – $\frac{1}{97.96}$ – ….. – $\frac{1}{3.2}$ – $\frac{1}{2.1}$ 

    B = $\frac{1}{99}$ – ( $\frac{1}{99.98}$ + $\frac{1}{98.97}$ + $\frac{1}{97.96}$ + ….. + $\frac{1}{3.2}$ + $\frac{1}{2.1}$ )

    B = $\frac{1}{99}$ – ( $\frac{1}{1.2}$ + $\frac{1}{2.3}$ + ….. + $\frac{1}{96.97}$ + $\frac{1}{97.98}$ + $\frac{1}{98.99}$ )

    B = $\frac{1}{99}$ – ( 1 – $\frac{1}{2}$ + $\frac{1}{2}$ – $\frac{1}{3}$ + ….. + $\frac{1}{96}$ – $\frac{1}{97}$ + $\frac{1}{97}$ – $\frac{1}{98}$ + $\frac{1}{98}$ – $\frac{1}{99}$ )

    B = $\frac{1}{99}$ – ( 1 – $\frac{1}{99}$ )

    B = $\frac{1}{99}$ – $\frac{98}{99}$

    B = $\frac{-97}{99}$

    Bình luận

Viết một bình luận