A=(√a/2-1/2√a)^2*(√a-1/√a+1-√a+1/√a-1) Rút gọn,tìm giá trị để A =-2 15/08/2021 Bởi Ivy A=(√a/2-1/2√a)^2*(√a-1/√a+1-√a+1/√a-1) Rút gọn,tìm giá trị để A =-2
Đáp án: $\begin{array}{l}Dkxd:a > 0;a \ne 1\\A = {\left( {\dfrac{{\sqrt a }}{2} – \dfrac{1}{{2\sqrt a }}} \right)^2}.\left( {\dfrac{{\sqrt a – 1}}{{\sqrt a + 1}} – \dfrac{{\sqrt a + 1}}{{\sqrt a – 1}}} \right)\\ = {\left( {\dfrac{{a – 1}}{{2\sqrt a }}} \right)^2}.\dfrac{{{{\left( {\sqrt a – 1} \right)}^2} – {{\left( {\sqrt a + 1} \right)}^2}}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a – 1} \right)}}\\ = \dfrac{{{{\left( {a – 1} \right)}^2}}}{{4a}}.\dfrac{{a – 2\sqrt a + 1 – a – 2\sqrt a + 1}}{{a – 1}}\\ = \dfrac{{a – 1}}{{4a}}.\left( { – 4\sqrt a } \right)\\ = \dfrac{{1 – a}}{{\sqrt a }}\\A = – 2\\ \Rightarrow \dfrac{{1 – a}}{{\sqrt a }} = – 2\\ \Rightarrow 1 – a = – 2\sqrt a \\ \Rightarrow a – 2\sqrt a = 1\\ \Rightarrow a – 2\sqrt a + 1 = 2\\ \Rightarrow {\left( {\sqrt a – 1} \right)^2} = 2\\ \Rightarrow \left[ \begin{array}{l}\sqrt a = 1 + \sqrt 2 \\\sqrt a = 1 – \sqrt 2 \left( {ktm} \right)\end{array} \right.\\ \Rightarrow a = {\left( {1 + \sqrt 2 } \right)^2} = 3 + 2\sqrt 2 \left( {tmdk} \right)\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
Dkxd:a > 0;a \ne 1\\
A = {\left( {\dfrac{{\sqrt a }}{2} – \dfrac{1}{{2\sqrt a }}} \right)^2}.\left( {\dfrac{{\sqrt a – 1}}{{\sqrt a + 1}} – \dfrac{{\sqrt a + 1}}{{\sqrt a – 1}}} \right)\\
= {\left( {\dfrac{{a – 1}}{{2\sqrt a }}} \right)^2}.\dfrac{{{{\left( {\sqrt a – 1} \right)}^2} – {{\left( {\sqrt a + 1} \right)}^2}}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a – 1} \right)}}\\
= \dfrac{{{{\left( {a – 1} \right)}^2}}}{{4a}}.\dfrac{{a – 2\sqrt a + 1 – a – 2\sqrt a + 1}}{{a – 1}}\\
= \dfrac{{a – 1}}{{4a}}.\left( { – 4\sqrt a } \right)\\
= \dfrac{{1 – a}}{{\sqrt a }}\\
A = – 2\\
\Rightarrow \dfrac{{1 – a}}{{\sqrt a }} = – 2\\
\Rightarrow 1 – a = – 2\sqrt a \\
\Rightarrow a – 2\sqrt a = 1\\
\Rightarrow a – 2\sqrt a + 1 = 2\\
\Rightarrow {\left( {\sqrt a – 1} \right)^2} = 2\\
\Rightarrow \left[ \begin{array}{l}
\sqrt a = 1 + \sqrt 2 \\
\sqrt a = 1 – \sqrt 2 \left( {ktm} \right)
\end{array} \right.\\
\Rightarrow a = {\left( {1 + \sqrt 2 } \right)^2} = 3 + 2\sqrt 2 \left( {tmdk} \right)
\end{array}$