` a,b,c,d ` satisfy ` ad -bc =1` . Prove that ` a^2 +b^2 +c^2+d^2 + ac+bd \ge \sqrt(3)` 15/11/2021 Bởi Allison ` a,b,c,d ` satisfy ` ad -bc =1` . Prove that ` a^2 +b^2 +c^2+d^2 + ac+bd \ge \sqrt(3)`
Đáp án: `+) (a^2 + b^2)(c^2 + d^2) = (ad – bc)^2 + (ac + bd)^2` (hiển nhiên) `= 1 + (ac + bd)^2` Đặt `Z = a^2 + b^2 + c^2 + d^2 + ac + bd` `(Cosi) -> Z ≥ 2\sqrt{(a^2 + b^2)(c^2 + d^2)} + ac + bd = 2\sqrt{1 + (ac + bd)^2} + ac + bd (1)` Đặt `ac + bd = x` `(1) <=> Z ≥ 2\sqrt{1 + x^2} + x` `<=> Z^2 ≥ x^2 + 4(1 + x^2) + 4x\sqrt{1 + x^2} = (x^2 + 1) + 2.\sqrt{x^2 + 1}.2x + 4x^2 + 3` `= (\sqrt{x^2 + 1} + 2x)^2 + 3 ≥ 3 (1)` Măt khác : `Z = a^2 + b^2 + c^2 + d^2 + ac + bd` `= 1/2 (a^2 + b^2 + c^2 + d^2) + 1/2 (a^2 + 2ac + c^2) + 1/2 (b^2 + 2bc + d^2)` `= 1/2 (a^2 + b^2 + c^2 + d^2) + 1/2 (a + c)^2 + 1/2 (b + d)^2 ≥ 0 (2)` Từ `(1)(2) -> Z ≥ \sqrt{3}` Giải thích các bước giải: Bình luận
Giải thích các bước giải: Ta có: $S=a^2+b^2+c^2+d^2+ac+bd-\sqrt{3}$ $\to S=a^2+b^2+c^2+d^2+ac+bd-\sqrt{3}(ad-bc)$ $\to S=a^2+b^2+c^2+d^2+ac+bd-\sqrt{3}ad+\sqrt{3}bc$ $\to S=a^2+(ac-\sqrt{3}ad)+b^2+c^2+d^2+bd+\sqrt{3}bc$ $\to S=a^2+a(c-\sqrt{3}d)+b^2+c^2+d^2+bd+\sqrt{3}bc$ $\to S=a^2+2a\cdot \dfrac{c-\sqrt{3}d}{2}+( \dfrac{c-\sqrt{3}d}{2})^2-( \dfrac{c-\sqrt{3}d}{2})^2+b^2+c^2+d^2+bd+\sqrt{3}bc$ $\to S=(a+ \dfrac{c-\sqrt{3}d}{2})^2+\dfrac{4b^2+3c^2+2\sqrt{3}cd+4\sqrt{3}cb+d^2+4db}{4}$ $\to S=(a+ \dfrac{c-\sqrt{3}d}{2})^2+\dfrac{4b^2+4\sqrt{3}cb+4db+d^2+3c^2+2\sqrt{3}cd}{4}$ $\to S=(a+ \dfrac{c-\sqrt{3}d}{2})^2+\dfrac{4b^2+4b(\sqrt{3}c+d)+3c^2+2\sqrt{3}cd+d^2}{4}$ $\to S=(a+ \dfrac{c-\sqrt{3}d}{2})^2+\dfrac{4b^2+4b(\sqrt{3}c+d)+(\sqrt{3}c+d)^2}{4}$ $\to S=(a+ \dfrac{c-\sqrt{3}d}{2})^2+\dfrac{(2b+\sqrt{3}c+d)^2}{4}$ $\to S\ge 0$ $\to a^2+b^2+c^2+d^2+ac+bd-\sqrt{3}\ge 0$ $\to a^2+b^2+c^2+d^2+ac+bd\ge \sqrt{3}$ Bình luận
Đáp án:
`+) (a^2 + b^2)(c^2 + d^2) = (ad – bc)^2 + (ac + bd)^2` (hiển nhiên)
`= 1 + (ac + bd)^2`
Đặt `Z = a^2 + b^2 + c^2 + d^2 + ac + bd`
`(Cosi) -> Z ≥ 2\sqrt{(a^2 + b^2)(c^2 + d^2)} + ac + bd = 2\sqrt{1 + (ac + bd)^2} + ac + bd (1)`
Đặt `ac + bd = x`
`(1) <=> Z ≥ 2\sqrt{1 + x^2} + x`
`<=> Z^2 ≥ x^2 + 4(1 + x^2) + 4x\sqrt{1 + x^2} = (x^2 + 1) + 2.\sqrt{x^2 + 1}.2x + 4x^2 + 3`
`= (\sqrt{x^2 + 1} + 2x)^2 + 3 ≥ 3 (1)`
Măt khác : `Z = a^2 + b^2 + c^2 + d^2 + ac + bd`
`= 1/2 (a^2 + b^2 + c^2 + d^2) + 1/2 (a^2 + 2ac + c^2) + 1/2 (b^2 + 2bc + d^2)`
`= 1/2 (a^2 + b^2 + c^2 + d^2) + 1/2 (a + c)^2 + 1/2 (b + d)^2 ≥ 0 (2)`
Từ `(1)(2) -> Z ≥ \sqrt{3}`
Giải thích các bước giải:
Giải thích các bước giải:
Ta có:
$S=a^2+b^2+c^2+d^2+ac+bd-\sqrt{3}$
$\to S=a^2+b^2+c^2+d^2+ac+bd-\sqrt{3}(ad-bc)$
$\to S=a^2+b^2+c^2+d^2+ac+bd-\sqrt{3}ad+\sqrt{3}bc$
$\to S=a^2+(ac-\sqrt{3}ad)+b^2+c^2+d^2+bd+\sqrt{3}bc$
$\to S=a^2+a(c-\sqrt{3}d)+b^2+c^2+d^2+bd+\sqrt{3}bc$
$\to S=a^2+2a\cdot \dfrac{c-\sqrt{3}d}{2}+( \dfrac{c-\sqrt{3}d}{2})^2-( \dfrac{c-\sqrt{3}d}{2})^2+b^2+c^2+d^2+bd+\sqrt{3}bc$
$\to S=(a+ \dfrac{c-\sqrt{3}d}{2})^2+\dfrac{4b^2+3c^2+2\sqrt{3}cd+4\sqrt{3}cb+d^2+4db}{4}$
$\to S=(a+ \dfrac{c-\sqrt{3}d}{2})^2+\dfrac{4b^2+4\sqrt{3}cb+4db+d^2+3c^2+2\sqrt{3}cd}{4}$
$\to S=(a+ \dfrac{c-\sqrt{3}d}{2})^2+\dfrac{4b^2+4b(\sqrt{3}c+d)+3c^2+2\sqrt{3}cd+d^2}{4}$
$\to S=(a+ \dfrac{c-\sqrt{3}d}{2})^2+\dfrac{4b^2+4b(\sqrt{3}c+d)+(\sqrt{3}c+d)^2}{4}$
$\to S=(a+ \dfrac{c-\sqrt{3}d}{2})^2+\dfrac{(2b+\sqrt{3}c+d)^2}{4}$
$\to S\ge 0$
$\to a^2+b^2+c^2+d^2+ac+bd-\sqrt{3}\ge 0$
$\to a^2+b^2+c^2+d^2+ac+bd\ge \sqrt{3}$