a) $\frac{x+1}{10}$ + $\frac{x+1}{11}$ + $\frac{x+1}{12}$ = $\frac{x+1}{13}$ + $\frac{x+1}{14}$

a) $\frac{x+1}{10}$ + $\frac{x+1}{11}$ + $\frac{x+1}{12}$ = $\frac{x+1}{13}$ + $\frac{x+1}{14}$

0 bình luận về “a) $\frac{x+1}{10}$ + $\frac{x+1}{11}$ + $\frac{x+1}{12}$ = $\frac{x+1}{13}$ + $\frac{x+1}{14}$”

  1. $\frac{x+1}{10}$ + $\frac{x+1}{11}$ + $\frac{x+1}{12}$ = $\frac{x+1}{13}$ + $\frac{x+1}{14}$

    => $\frac{x+1}{10}$ + $\frac{x+1}{11}$ + $\frac{x+1}{12}$ – $\frac{x+1}{13}$ – $\frac{x+1}{14}$ =0

    ⇒(x+1)( $\frac{1}{10}$ + $\frac{1}{11}$ + $\frac{1}{12}$ – $\frac{1}{13}$ – $\frac{1}{14}$ )=0

    vì $\frac{1}{10}$ + $\frac{1}{11}$ + $\frac{1}{12}$ – $\frac{1}{13}$ – $\frac{1}{14}$ >0

    nên x+1 =0

    =>x=-1

    @htkbaam

     

    Bình luận
  2. $\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}$

    $\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0$

    $(x+1).(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14})=0$

    Vì $\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}>0$

    $→x+1=0$

    $→x=0-1=-1$

    Vậy $x=-1$

    Bình luận

Viết một bình luận