A=($\frac{1}{x+2√x}$-$\frac{1}{√x+2}$)÷ $\frac{1-√x}{x+4√x+4}$ (với x>0; x $\neq$1 04/07/2021 Bởi Kinsley A=($\frac{1}{x+2√x}$-$\frac{1}{√x+2}$)÷ $\frac{1-√x}{x+4√x+4}$ (với x>0; x $\neq$1
Đáp án: `a)A=(1/(x+2sqrtx)-1/(sqrtx+2)):(1-sqrtx)/(x+4sqrtx+4)(x>0,x ne 1)` `A=(1/(sqrtx(sqrtx+2))-sqrtx/(sqrtx(sqrtx+2))):(1-sqrtx)/(sqrtx+2)^2` `A=(1-sqrtx)/(sqrtx(sqrtx+2))*(sqrtx+2)^2/(1-sqrtx)` `A=(sqrtx+2)/sqrtx.` `b)A=5/2` `<=>(sqrtx+2)/sqrtx=5/2` `<=>2sqrtx+4=5sqrtx` `<=>4=5sqrtx-2sqrtx` `<=>4=3sqrtx` `<=>sqrtx=4/3` `<=>x=9/16(tm)` Vậy `x=9/16` thì `A=5/2`. Bình luận
Đáp án:
`a)A=(1/(x+2sqrtx)-1/(sqrtx+2)):(1-sqrtx)/(x+4sqrtx+4)(x>0,x ne 1)`
`A=(1/(sqrtx(sqrtx+2))-sqrtx/(sqrtx(sqrtx+2))):(1-sqrtx)/(sqrtx+2)^2`
`A=(1-sqrtx)/(sqrtx(sqrtx+2))*(sqrtx+2)^2/(1-sqrtx)`
`A=(sqrtx+2)/sqrtx.`
`b)A=5/2`
`<=>(sqrtx+2)/sqrtx=5/2`
`<=>2sqrtx+4=5sqrtx`
`<=>4=5sqrtx-2sqrtx`
`<=>4=3sqrtx`
`<=>sqrtx=4/3`
`<=>x=9/16(tm)`
Vậy `x=9/16` thì `A=5/2`.
Đáp án:
Giải thích các bước giải: