a,$\frac{2}{2x+1}$ + $\frac{2}{4×2-1}$ = $\frac{7}{2x-1}$ b, $\frac{x2+5}{25-x2}$ = $\frac{3}{x+5}$ + $\frac{x}{x-5}$ c, $\frac{3}{x+1}$ – $\fr

a,$\frac{2}{2x+1}$ + $\frac{2}{4×2-1}$ = $\frac{7}{2x-1}$
b, $\frac{x2+5}{25-x2}$ = $\frac{3}{x+5}$ + $\frac{x}{x-5}$
c, $\frac{3}{x+1}$ – $\frac{2}{x+5}$ = $\frac{4x+5}{x2+3x+2}$
d, $\frac{1}{x+2}$ – $\frac{1}{x-2}$ = $\frac{3x-12}{x2-4}$

0 bình luận về “a,$\frac{2}{2x+1}$ + $\frac{2}{4×2-1}$ = $\frac{7}{2x-1}$ b, $\frac{x2+5}{25-x2}$ = $\frac{3}{x+5}$ + $\frac{x}{x-5}$ c, $\frac{3}{x+1}$ – $\fr”

  1. a) x$\neq$ $\frac{-1}{2}$ 

       $\frac{2}{2x+1}$+$\frac{2}{4x²-1}$ =$\frac{7}{2x-1}$ 

    ⇒2(2x-1)+2=7(2x+1)

    ⇔4x-2+2=14x+7

    ⇔ -10x=7

    ⇔ x= $\frac{-7}{10}$ 

    b) x$\neq$ ±5

        $\frac{x²+5}{25-x²}$ =$\frac{3}{x+5}$ +$\frac{x}{x-5}$ 

    ⇔$\frac{x²+5}{25-x²}$ =$\frac{3}{x+5}$ -$\frac{x}{5-x}$ 

    ⇒x²+5=3(5-x)-x(x+5)

    ⇔x²+5=15-3x-x²-5x

    ⇔2x²+8x-10=0

    ⇔x²+4x-5=0

    ⇔x²+5x-x-5=0

    ⇔x(x+5)-(x+5)=0

    ⇔(x+5)(x-1)=0

    ⇔\(\left[ \begin{array}{l}x+5=0\\x-1=0\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x=-5(loại)\\x=1(TM)\end{array} \right.\) 

    Vậy x=1

    c) x$\neq$ -1; x$\neq$ -2

        $\frac{3}{x+1}$ -$\frac{2}{x+2}$ =$\frac{4x+5}{x²+3x+2}$ 

    ⇒3(x+2)-2(x+1)=4x+5

    ⇔3x+6-2x-2=4x+5

    ⇔ -3x= 1

    ⇔ x= $\frac{-1}{3}$ 

    d) x$\neq$ ±2

        $\frac{1}{x+2}$ -$\frac{1}{x-2}$ =$\frac{3x-12}{x²-4}$ 

    ⇒x-2 -(x+2)=3x-12

    ⇔x-2-x-2=3x-12

    ⇔ -5x= 16

    ⇔ x= $\frac{-16}{5}$ 

     

    Bình luận

Viết một bình luận