a)$\frac{x-2}{x+3}$ = $\frac{x-3}{x+1}$ b)$\frac{x}{3}$ = $\frac{y}{4}$ và xy=48 c)2,7:(2x)=$\frac{11}{5}$ :3 24/08/2021 Bởi Raelynn a)$\frac{x-2}{x+3}$ = $\frac{x-3}{x+1}$ b)$\frac{x}{3}$ = $\frac{y}{4}$ và xy=48 c)2,7:(2x)=$\frac{11}{5}$ :3
Đáp án: $\text{ a) $\dfrac{x-2}{x+3}$ = $\dfrac{x-3}{x+1}$ }$ $\text{ĐKXĐ : x $\neq$ -3 ; x $\neq$ -1}$ $\text{⇔ $\dfrac{(x-2)(x+1)}{(x+3)(x+1)}$ = $\dfrac{(x-3)(x+3)}{(x+1)(x+3)}$ }$ $⇒ (x-2)(x+1) = (x-3)(x+3)$ $⇔ x² +x -2x -2 = x² – 3x +3x – 9$ $⇔ x² – x² +x -2x-3x+3x = -9 +2 $ $⇔ -x = -7$ $⇔ x= 7(Thỏa mãn)$ $\text{Vậy x= 7 }$ $\text{b) $\dfrac{x}{3}$ = $\dfrac{y}{4}$ và xy = 48}$ $\text{Đặt $\dfrac{x}{3}$ = $\dfrac{y}{4}$ = k}$ $⇒ x = 3k$ $⇒ y = 4k$ $\text{Theo đề , ta có : }$ $ 3k . 4k = 48$ $⇔ 12k² = 48$ $⇔ k² = 48 : 12$ $⇔ k² = 4$ $⇔k=±2$ $\text{Thay k =2 vào, ta có :}$ $⇒x = 2 .3 = 6$ $⇒y = 2 . 4 = 8$ $\text{Thay k = -2 vào, ta có :}$ $⇒ x = -2 . 3 = -6$ $⇒y = -2 . 4 = -8$ $\text{Vậy các cặp số x,y cần tìm là}$ $ (-6 ; -8) , (6 ; 8)$ $c) 2,7 : (2x) = \dfrac{11}{5} : 3$ $⇔ 2,7 : (2x) = \dfrac{11}{15}$ $⇔ 2x = 2,7 : \dfrac{11}{15}$ $⇔ 2x= \dfrac{81}{22}$ $⇔ x= \dfrac{81}{22} : 2$ $⇔ x= \dfrac{81}{44}$ $\text{Vậy x = $\dfrac{81}{44}$ }$ Bình luận
a) $\dfrac{x-2}{x+3}=\dfrac{x-3}{x+1}$ ⇒ $(x-2)(x+1)=(x+3)(x-3)$ ⇒ $[(x-2)x]+(x-2)=x^2-3^2$ ⇒ $x^2-2x+x-2=x^2-9$ ⇒ $x^2+(-2x+x)-2=x^2-9$ ⇒ $x^2-x-2=x^2-9$ ⇒ $(x^2-x-2)-(x^2-9)=0$ $x^2-x-2-x^2+9=0$ $(x^2-x^2)-x+(-2+9)=0$ $-x+7=0$ ⇒ $-x=-7$ ⇒ $x=7$ b) $\dfrac{x}{3}=\dfrac{y}{4}$ ⇒ $x=\dfrac{3y}{4}$ ⇒ $xy=\dfrac{3y}{4}.y=48$ ⇒ $xy=\dfrac{3y^2}{4}=48$ $xy=3y^2=48.4=192$ $y^2=192:3=64$ \(⇒\left[ \begin{array}{l}y=8\\x=6\end{array} \right.\) \(⇒\left[ \begin{array}{l}y=-8\\x=-6\end{array} \right.\) c) $2,7:(2x)=\dfrac{11}{5}:3$ $\dfrac{27}{10}:(2x)=\dfrac{11}{15}$ $2x=\dfrac{27}{10}:\dfrac{11}{15}$ $2x=\dfrac{27}{10}.\dfrac{15}{11}=\dfrac{81}{22}$ ⇒ $x=\dfrac{81}{22}:2$ ⇒ $x=\dfrac{81}{22}.\dfrac{1}{2}=\dfrac{81}{44}$ Bình luận
Đáp án:
$\text{ a) $\dfrac{x-2}{x+3}$ = $\dfrac{x-3}{x+1}$ }$
$\text{ĐKXĐ : x $\neq$ -3 ; x $\neq$ -1}$
$\text{⇔ $\dfrac{(x-2)(x+1)}{(x+3)(x+1)}$ = $\dfrac{(x-3)(x+3)}{(x+1)(x+3)}$ }$
$⇒ (x-2)(x+1) = (x-3)(x+3)$
$⇔ x² +x -2x -2 = x² – 3x +3x – 9$
$⇔ x² – x² +x -2x-3x+3x = -9 +2 $
$⇔ -x = -7$
$⇔ x= 7(Thỏa mãn)$
$\text{Vậy x= 7 }$
$\text{b) $\dfrac{x}{3}$ = $\dfrac{y}{4}$ và xy = 48}$
$\text{Đặt $\dfrac{x}{3}$ = $\dfrac{y}{4}$ = k}$
$⇒ x = 3k$
$⇒ y = 4k$
$\text{Theo đề , ta có : }$
$ 3k . 4k = 48$
$⇔ 12k² = 48$
$⇔ k² = 48 : 12$
$⇔ k² = 4$
$⇔k=±2$
$\text{Thay k =2 vào, ta có :}$
$⇒x = 2 .3 = 6$
$⇒y = 2 . 4 = 8$
$\text{Thay k = -2 vào, ta có :}$
$⇒ x = -2 . 3 = -6$
$⇒y = -2 . 4 = -8$
$\text{Vậy các cặp số x,y cần tìm là}$ $ (-6 ; -8) , (6 ; 8)$
$c) 2,7 : (2x) = \dfrac{11}{5} : 3$
$⇔ 2,7 : (2x) = \dfrac{11}{15}$
$⇔ 2x = 2,7 : \dfrac{11}{15}$
$⇔ 2x= \dfrac{81}{22}$
$⇔ x= \dfrac{81}{22} : 2$
$⇔ x= \dfrac{81}{44}$
$\text{Vậy x = $\dfrac{81}{44}$ }$
a) $\dfrac{x-2}{x+3}=\dfrac{x-3}{x+1}$
⇒ $(x-2)(x+1)=(x+3)(x-3)$
⇒ $[(x-2)x]+(x-2)=x^2-3^2$
⇒ $x^2-2x+x-2=x^2-9$
⇒ $x^2+(-2x+x)-2=x^2-9$
⇒ $x^2-x-2=x^2-9$
⇒ $(x^2-x-2)-(x^2-9)=0$
$x^2-x-2-x^2+9=0$
$(x^2-x^2)-x+(-2+9)=0$
$-x+7=0$
⇒ $-x=-7$
⇒ $x=7$
b) $\dfrac{x}{3}=\dfrac{y}{4}$
⇒ $x=\dfrac{3y}{4}$
⇒ $xy=\dfrac{3y}{4}.y=48$
⇒ $xy=\dfrac{3y^2}{4}=48$
$xy=3y^2=48.4=192$
$y^2=192:3=64$
\(⇒\left[ \begin{array}{l}y=8\\x=6\end{array} \right.\)
\(⇒\left[ \begin{array}{l}y=-8\\x=-6\end{array} \right.\)
c) $2,7:(2x)=\dfrac{11}{5}:3$
$\dfrac{27}{10}:(2x)=\dfrac{11}{15}$
$2x=\dfrac{27}{10}:\dfrac{11}{15}$
$2x=\dfrac{27}{10}.\dfrac{15}{11}=\dfrac{81}{22}$
⇒ $x=\dfrac{81}{22}:2$
⇒ $x=\dfrac{81}{22}.\dfrac{1}{2}=\dfrac{81}{44}$