$\begin{array}{l} A = \dfrac{{a\sqrt a + b\sqrt b }}{{\sqrt a + \sqrt b }}.\left( {\sqrt a + \sqrt b } \right)\\ = a\sqrt a + b\sqrt b \\ = {\left( {\sqrt a } \right)^3} + {\left( {\sqrt b } \right)^3}\\ = \left( {\sqrt a + \sqrt b } \right)\left( {a – \sqrt {ab} + b} \right) \end{array}$
`\text{~~Holi~~}`
`A=(a\sqrt{a}+b\sqrt{b})/(\sqrt{a}+\sqrt{b}) . (\sqrt{a}+\sqrt{b})`
`= a\sqrt{a}+b\sqrt{b}`
`= \sqrt{a}^3 + \sqrt{b}^3`
`= (\sqrt{a}+\sqrt{b})(\sqrt{a}^2+\sqrt{a}\sqrt{b}+\sqrt{b}^2)`
`= (\sqrt{a}+\sqrt{b})(\sqrt{a}^2+\sqrt{ab}+\sqrt{b}^2)`
Đáp án:
$\begin{array}{l}
A = \dfrac{{a\sqrt a + b\sqrt b }}{{\sqrt a + \sqrt b }}.\left( {\sqrt a + \sqrt b } \right)\\
= a\sqrt a + b\sqrt b \\
= {\left( {\sqrt a } \right)^3} + {\left( {\sqrt b } \right)^3}\\
= \left( {\sqrt a + \sqrt b } \right)\left( {a – \sqrt {ab} + b} \right)
\end{array}$