a) Rút Gọn `A=((x+1)/(x-1)-(x-1)/(x+1)) : (2x)/(5x-5)` b) Tìm x để `A + 6/(x-2) =-1`

a) Rút Gọn
`A=((x+1)/(x-1)-(x-1)/(x+1)) : (2x)/(5x-5)`
b) Tìm x để `A + 6/(x-2) =-1`

0 bình luận về “a) Rút Gọn `A=((x+1)/(x-1)-(x-1)/(x+1)) : (2x)/(5x-5)` b) Tìm x để `A + 6/(x-2) =-1`”

  1. `a) A = ((x+1)/(x-1) – (x-1)/(x+1)) : (2x)/(5x-5) (ĐKXĐ : x \ne +-1)`

    `= (((x+1).(x+1))/((x-1).(x+1)) – ((x-1).(x-1))/((x+1).(x-1)) ): (2x)/(5.(x-1))`

    ` = ((x+1)^2 – (x-1)^2)/((x-1).(x+1)) . (5.(x-1))/(2x)`

    ` = ((x^2 + 2x+1) – (x^2 – 2x+1))/((x-1).(x+1)) . (5.(x-1))/(2x)`

    ` = (x^2 + 2x + 1 – x^2 + 2x – 1)/((x-1).(x+1)) . (5.(x-1))/(2x)`

    ` = (4x)/((x-1).(x+1)) . (5.(x-1))/(2x)`

    ` = ( 2 . 2x)/((x-1).(x+1)) . (5.(x-1))/(2x)`

    ` = (2.5)/(x+1)`

    ` = 10/(x+1)`

    `b)` 

    Ta có : `A + 6/(x-2) = -1`

    `<=> A = -1 – 6/(x-2)`

    Để `A + 6/(x+1) = -1` thì `10/(x+1) = -1-6/(x-2)` và `x\ne +-1`

    `<=> (10.(x-2))/((x+1).(x-2)) = (-1.(x+1).(x-2))/((x+1).(x-2)) – (6.(x+1))/((x+1).(x-2))`

    `=> 10.(x-2) = -1.(x+1).(x-2) – 6.(x+1)`

    `<=> 10x – 20 = (-x-1).(x-2) – 6x – 6`

    `<=> 10x – 20 = -x^2 + 2x – x + 2 – 6x – 6`

    `<=> 10x + x^2 – 2x + x + 6x = 2 – 6 + 20`

    `<=> x^2 +15x = 16`

    `<=> x^2 + 15x – 16 = 0`

    `<=> x^2 – x + 16x – 16 = 0 `

    `<=> x.(x-1) + 16.(x-1) = 0`

    `<=> (x+16).(x-1) = 0`

    `<=> x+16=0` hoặc `x-1=0`

    `+)x+16=0 <=> x =-16 (TMĐKXĐ)`

    `+) x-1=0 <=> x =1 (KTMĐKXĐ)`

    Vậy với `x=-16` thì `A + 6/(x-2) = -1`

    Bình luận
  2. Đáp án+Giải thích các bước giải:

     `a)`

    Với `x\ne1;x\ne-1;x\ne0`

    Ta có:

    `A=((x+1)/(x-1)-(x-1)/(x+1)):(2x)/(5x-5)`

    `\to A=((x+1)(x+1)-(x-1)(x-1))/((x-1)(x+1)):(2x)/(5x-5)`

    `\to A=((x+1)^2-(x-1)^2)/((x-1)(x+1)):(2x)/(5x-5)`

    `\to A=((x+1+x-1)(x+1-x+1))/((x-1)(x+1)):(2x)/(5(x-1))`

    `\to A=(2x.2)/((x-1)(x+1)).(5(x-1))/(2x)`

    `\to A=2.5/(x+1)`

    `\to A=10/(x+1)`

    `b)ĐKXĐ:x\ne-1;x\ne1;x\ne2;x\ne0`

    `A+6/(x-2)=-1`

    `⇔10/(x+1)+6/(x-2)=-1`

    `⇔(10(x-2)+6(x+1))/((x+1)(x-2))=-((x+1)(x-2))/((x+1)(x-2))`

    `⇒10(x-2)+6(x+1)=-(x+1)(x-2)`

    `⇔10x-20+6x+6=-(x^2-x-2)`

    `⇔16x-14=-x^2+x+2`

    `⇔x^2-x-2+16x-14=0`

    `⇔x^2+15x-16=0`

    `⇔x^2+16x-x-16=0`

    `⇔x(x+16)-(x+16)=0`

    `⇔(x-1)(x+16)=0`

    \(⇔\left[ \begin{array}{l}x-1=0\\x+16=0\end{array} \right.\)

    \(⇔\left[ \begin{array}{l}x=1(ktm)\\x=-16(tm)\end{array} \right.\)

    Vậy `x=-16` để `A+6/(x-2)=-1`

    Bình luận

Viết một bình luận