a)Rút gọn A=(x/x căn x-4 căn x -6/3 căn x-6 + 1/căn x+2): (căn x -2 +10-x/căn x +2 b)Tìm x biết A bé hơn 2 09/08/2021 Bởi Aaliyah a)Rút gọn A=(x/x căn x-4 căn x -6/3 căn x-6 + 1/căn x+2): (căn x -2 +10-x/căn x +2 b)Tìm x biết A bé hơn 2
Giải thích các bước giải: ĐKXĐ: \(\left\{ \begin{array}{l}x \ge 0\\x \ne 4\end{array} \right.\) Ta có: \(\begin{array}{l}a,\\A = \left( {\dfrac{x}{{x\sqrt x – 4\sqrt x }} – \dfrac{6}{{3\sqrt x – 6}} + \dfrac{1}{{\sqrt x + 2}}} \right):\left( {\sqrt x – 2 + \dfrac{{10 – x}}{{\sqrt x + 2}}} \right)\\ = \left( {\dfrac{x}{{\sqrt x .\left( {x – 4} \right)}} – \dfrac{2}{{\sqrt x – 2}} + \dfrac{1}{{\sqrt x + 2}}} \right):\dfrac{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right) + 10 – x}}{{\sqrt x + 2}}\\ = \left( {\dfrac{{\sqrt x }}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}} – \dfrac{2}{{\sqrt x – 2}} + \dfrac{1}{{\sqrt x + 2}}} \right):\dfrac{{\left( {x – 4} \right) + 10 – x}}{{\sqrt x + 2}}\\ = \dfrac{{\sqrt x – 2.\left( {\sqrt x + 2} \right) + \left( {\sqrt x – 2} \right)}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}:\dfrac{6}{{\sqrt x + 2}}\\ = \dfrac{{ – 6}}{{\left( {\sqrt x – 2} \right).\left( {\sqrt x + 2} \right)}}.\dfrac{{\sqrt x + 2}}{6}\\ = \dfrac{{ – 1}}{{\sqrt x – 2}} = \dfrac{1}{{2 – \sqrt x }}\\b,\\A < 2 \Leftrightarrow \dfrac{1}{{2 – \sqrt x }} – 2 < 0\\ \Leftrightarrow \dfrac{{1 – 2.\left( {2 – \sqrt x } \right)}}{{2 – \sqrt x }} < 0\\ \Leftrightarrow \dfrac{{2\sqrt x – 3}}{{2 – \sqrt x }} < 0\\ \Leftrightarrow \dfrac{{2\sqrt x – 3}}{{\sqrt x – 2}} > 0\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt x > 2\\\sqrt x < \dfrac{3}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > 4\\0 \le x < \dfrac{9}{4}\end{array} \right.\\ \end{array}\) Bình luận
Giải thích các bước giải:
ĐKXĐ: \(\left\{ \begin{array}{l}
x \ge 0\\
x \ne 4
\end{array} \right.\)
Ta có:
\(\begin{array}{l}
a,\\
A = \left( {\dfrac{x}{{x\sqrt x – 4\sqrt x }} – \dfrac{6}{{3\sqrt x – 6}} + \dfrac{1}{{\sqrt x + 2}}} \right):\left( {\sqrt x – 2 + \dfrac{{10 – x}}{{\sqrt x + 2}}} \right)\\
= \left( {\dfrac{x}{{\sqrt x .\left( {x – 4} \right)}} – \dfrac{2}{{\sqrt x – 2}} + \dfrac{1}{{\sqrt x + 2}}} \right):\dfrac{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right) + 10 – x}}{{\sqrt x + 2}}\\
= \left( {\dfrac{{\sqrt x }}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}} – \dfrac{2}{{\sqrt x – 2}} + \dfrac{1}{{\sqrt x + 2}}} \right):\dfrac{{\left( {x – 4} \right) + 10 – x}}{{\sqrt x + 2}}\\
= \dfrac{{\sqrt x – 2.\left( {\sqrt x + 2} \right) + \left( {\sqrt x – 2} \right)}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}:\dfrac{6}{{\sqrt x + 2}}\\
= \dfrac{{ – 6}}{{\left( {\sqrt x – 2} \right).\left( {\sqrt x + 2} \right)}}.\dfrac{{\sqrt x + 2}}{6}\\
= \dfrac{{ – 1}}{{\sqrt x – 2}} = \dfrac{1}{{2 – \sqrt x }}\\
b,\\
A < 2 \Leftrightarrow \dfrac{1}{{2 – \sqrt x }} – 2 < 0\\
\Leftrightarrow \dfrac{{1 – 2.\left( {2 – \sqrt x } \right)}}{{2 – \sqrt x }} < 0\\
\Leftrightarrow \dfrac{{2\sqrt x – 3}}{{2 – \sqrt x }} < 0\\
\Leftrightarrow \dfrac{{2\sqrt x – 3}}{{\sqrt x – 2}} > 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt x > 2\\
\sqrt x < \dfrac{3}{2}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x > 4\\
0 \le x < \dfrac{9}{4}
\end{array} \right.\\
\end{array}\)