a,(-x+y)-(x-y )² b, (3x+4y) – (2x ² +2x +1) c, – ( 4x+1) – (-6x+2 ) d, (x ² + 4) ² + (x-y) (x+y) e (x-y+z).(x-y-z) g ( x ²+ 2x + 1) . (x ² + 1)

a,(-x+y)-(x-y )²
b, (3x+4y) – (2x ² +2x +1)
c, – ( 4x+1) – (-6x+2 )
d, (x ² + 4) ² + (x-y) (x+y)
e (x-y+z).(x-y-z)
g ( x ²+ 2x + 1) . (x ² + 1)

0 bình luận về “a,(-x+y)-(x-y )² b, (3x+4y) – (2x ² +2x +1) c, – ( 4x+1) – (-6x+2 ) d, (x ² + 4) ² + (x-y) (x+y) e (x-y+z).(x-y-z) g ( x ²+ 2x + 1) . (x ² + 1)”

  1. `#DyHungg`

    `a) (-x+y)-(x-y)²`

    `=-x-y-x²+2xy-y^2`

    …………

    `b) (3x+4y)-(2x²+2x+1)`

    `=3x+4y-2x²-2x-1`

    `=x+4y-2x²-1`

    `c) -(4x+1)-(-6x+2)`

    `=-4x-1+6x-2`

    `=2x-3`

    `d) (x²+4)²+(x-y)(x+y)`

    `=x^4+8x²+16+x²-y²`

    `=x^4+9x^2+16-y^2`

    `e) (x-y+z)(x-y-z)`

    `=(x-y)²-z²`

    `=x²-2xy+y²-x²`

    `g) (x²+2x+1)(x²+1)`

    `=x^4+2x³+2x²+2x+1`

     

    Bình luận
  2. Đáp án:

    $\begin{array}{l}
    a)\left( { – x + y} \right) – {\left( {x – y} \right)^2}\\
     =  – x + y – \left( {{x^2} – 2xy + {y^2}} \right)\\
     =  – x + y – {x^2} + 2xy + {y^2}\\
    b)\left( {3x + 4y} \right) – \left( {2{x^2} + 2x + 1} \right)\\
     = 3x + 4y – 2{x^2} – 2x – 1\\
     =  – 2{x^2} + x + 4y – 1\\
    c) – \left( {4x + 1} \right) – \left( { – 6x + 2} \right)\\
     =  – 4x – 1 + 6x – 2\\
     = 2x – 3\\
    d){\left( {{x^2} + 4} \right)^2} + \left( {x – y} \right)\left( {x + y} \right)\\
     = {x^4} + 8{x^2} + 16 + {x^2} – {y^2}\\
     = {x^4} + 9{x^2} + 16 – {y^2}\\
    e)\left( {x – y + z} \right)\left( {x – y – z} \right)\\
     = {\left( {x – y} \right)^2} – {z^2}\\
     = {x^2} – 2xy + {y^2} – {z^2}\\
    g)\left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\
     = {x^4} + {x^2} + 2{x^3} + 2x + {x^2} + 1\\
     = {x^4} + 2{x^3} + 2{x^2} + 2x + 1
    \end{array}$

    Bình luận

Viết một bình luận