b) (x – 1)2016+ (2y – 1)2016+ |x + 2y – z|2017= 0 02/07/2021 Bởi Piper b) (x – 1)2016+ (2y – 1)2016+ |x + 2y – z|2017= 0
Đáp án: `b)(x-1)^2016+(2y-1)^2016+|x+2y-z|^2017=0` Vì `(x-1)^2016>=0` `(2y-1)^2016>=0` `|x+2y-z|^2017>=0` `=>(x-1)^2016+(2y-1)^2016+|x+2y-z|^2017>=0` `\text{Mà đề bài cho:}(x-1)^2016+(2y-1)^2016+|x+2y-z|^2017=0` `<=>` \(\begin{cases}x-1=0\\2x-1=0\\x+2y-z=0\\\end{cases}\) `<=>` \(\begin{cases}x=1\\2y=1\\z=x+2y=1+1\\\end{cases}\) `<=>` \(\begin{cases}x=1\\y=\dfrac12\\z=2\\\end{cases}\) Vậy `(x,y,z)=(1,1/2,2).` Bình luận
Giải: `(x – 1)^2016 >= 0` ; `(2y – 1)^2016 >= 0` ; `|x + 2y – z|^2017 >= 0` `(∀x,y,z)` Mà `(x – 1)^2016 + (2y – 1)^2016 + |x + 2y – z|^2017 = 0` `->` $\left\{ \begin{array}{l}(x – 1)^(2016) = 0\\(2y – 1)^(2016) = 0\\|x + 2y – z|^(2017) = 0\end{array} \right.$ `->` $\left\{ \begin{array}{l}x – 1 = 0\\2y – 1 = 0\\x + 2y – z = 0\end{array} \right.$ `->` $\left\{ \begin{array}{l}x = 1\\y = \dfrac{1}{2}\\1 + 1 – z = 0\end{array} \right.$ `->` $\left\{ \begin{array}{l}x = 1\\y = \dfrac{1}{2}\\z = 2\end{array} \right.$ Vậy `x = 1, y = 1/2, z = 2` Bình luận
Đáp án:
`b)(x-1)^2016+(2y-1)^2016+|x+2y-z|^2017=0`
Vì `(x-1)^2016>=0`
`(2y-1)^2016>=0`
`|x+2y-z|^2017>=0`
`=>(x-1)^2016+(2y-1)^2016+|x+2y-z|^2017>=0`
`\text{Mà đề bài cho:}(x-1)^2016+(2y-1)^2016+|x+2y-z|^2017=0`
`<=>` \(\begin{cases}x-1=0\\2x-1=0\\x+2y-z=0\\\end{cases}\)
`<=>` \(\begin{cases}x=1\\2y=1\\z=x+2y=1+1\\\end{cases}\)
`<=>` \(\begin{cases}x=1\\y=\dfrac12\\z=2\\\end{cases}\)
Vậy `(x,y,z)=(1,1/2,2).`
Giải:
`(x – 1)^2016 >= 0` ; `(2y – 1)^2016 >= 0` ; `|x + 2y – z|^2017 >= 0` `(∀x,y,z)`
Mà `(x – 1)^2016 + (2y – 1)^2016 + |x + 2y – z|^2017 = 0`
`->` $\left\{ \begin{array}{l}(x – 1)^(2016) = 0\\(2y – 1)^(2016) = 0\\|x + 2y – z|^(2017) = 0\end{array} \right.$
`->` $\left\{ \begin{array}{l}x – 1 = 0\\2y – 1 = 0\\x + 2y – z = 0\end{array} \right.$
`->` $\left\{ \begin{array}{l}x = 1\\y = \dfrac{1}{2}\\1 + 1 – z = 0\end{array} \right.$
`->` $\left\{ \begin{array}{l}x = 1\\y = \dfrac{1}{2}\\z = 2\end{array} \right.$
Vậy `x = 1, y = 1/2, z = 2`