B=1+3^1+3^2+3^3+3^4+…+3^2019 chia cho 13 ;40 dư là ? 29/07/2021 Bởi Hailey B=1+3^1+3^2+3^3+3^4+…+3^2019 chia cho 13 ;40 dư là ?
Đáp án + Giải thích các bước giải: `B=1+3^{1}+3^{2}+3^{3}+3^{4}+….+3^{2019}` `=(1+3^{1}+3^{2})+(3^{3}+3^{4}+3^{5})+….+(3^{2017}+3^{2018}+3^{2019})` `=(1+3+3^{2})+3^{3}(1+3+3^{2})+….+3^{2017}(1+3+3^{2})` `=13+3^{3}.13+….+3^{2017}.13` `=13(1+3^{3}+…+3^{2017})` `\vdots 13` `————–` `B=1+3^{1}+3^{2}+3^{3}+3^{4}+….+3^{2019}` `=(1+3^{1}+3^{2}+3^{3})+….+(3^{2016}+3^{2017}+3^{2018}+3^{2019})` `=(1+3+3^{2}+3^{3})+….+3^{2016}(1+3+3^{2}+3^{3})` `=40+…+3^{2016}.40` `=40.(1+…+3^{2016})` `\vdots 40` Vậy số dư khi chia `B` cho `13` là : `0` số dư khi chia `B` cho `40` là : `0` Bình luận
Đáp án + Giải thích các bước giải: `B=1+3^1+3^2+3^3+3^4+3^5+…+3^2017+3^2018+3^2019` `=>B=(1+3^1+3^2)+(3^3+3^4+3^5)+…+(3^2017+3^2018+3^2019)` `=>B=1(1+3^1+3^2)+3^3(1+3^1+3^2)+…+3^2017(1+3^1+3^2)` `=>B=1. 13+3^3. 13+…+3^2017. 13` `=>B=13(1+3^3+…+3^2017)\vdots13` `=>B:13` dư `0` `—————–` `B=1+3^1+3^2+3^3+3^4+3^5+3^6+3^7+…+3^2016+3^2017+3^2018+3^2019` `=>B=(1+3^1+3^2+3^3)+(3^4+3^5+3^6+3^7)+…+(3^2016+3^2017+3^2018+3^2019)` `=>B=1(1+3^1+3^2+3^3)+3^4(1+3^1+3^2+3^3)+…+3^2016(1+3^1+3^2+3^3)` `=>B=1.40+3^4. 40+…+3^2016. 40` `=>B=40(1+3^4+…+3^2016)\vdots40` `=>B:40` dư `0` Bình luận
Đáp án + Giải thích các bước giải:
`B=1+3^{1}+3^{2}+3^{3}+3^{4}+….+3^{2019}`
`=(1+3^{1}+3^{2})+(3^{3}+3^{4}+3^{5})+….+(3^{2017}+3^{2018}+3^{2019})`
`=(1+3+3^{2})+3^{3}(1+3+3^{2})+….+3^{2017}(1+3+3^{2})`
`=13+3^{3}.13+….+3^{2017}.13`
`=13(1+3^{3}+…+3^{2017})` `\vdots 13`
`————–`
`B=1+3^{1}+3^{2}+3^{3}+3^{4}+….+3^{2019}`
`=(1+3^{1}+3^{2}+3^{3})+….+(3^{2016}+3^{2017}+3^{2018}+3^{2019})`
`=(1+3+3^{2}+3^{3})+….+3^{2016}(1+3+3^{2}+3^{3})`
`=40+…+3^{2016}.40`
`=40.(1+…+3^{2016})` `\vdots 40`
Vậy số dư khi chia `B` cho `13` là : `0`
số dư khi chia `B` cho `40` là : `0`
Đáp án + Giải thích các bước giải:
`B=1+3^1+3^2+3^3+3^4+3^5+…+3^2017+3^2018+3^2019`
`=>B=(1+3^1+3^2)+(3^3+3^4+3^5)+…+(3^2017+3^2018+3^2019)`
`=>B=1(1+3^1+3^2)+3^3(1+3^1+3^2)+…+3^2017(1+3^1+3^2)`
`=>B=1. 13+3^3. 13+…+3^2017. 13`
`=>B=13(1+3^3+…+3^2017)\vdots13`
`=>B:13` dư `0`
`—————–`
`B=1+3^1+3^2+3^3+3^4+3^5+3^6+3^7+…+3^2016+3^2017+3^2018+3^2019`
`=>B=(1+3^1+3^2+3^3)+(3^4+3^5+3^6+3^7)+…+(3^2016+3^2017+3^2018+3^2019)`
`=>B=1(1+3^1+3^2+3^3)+3^4(1+3^1+3^2+3^3)+…+3^2016(1+3^1+3^2+3^3)`
`=>B=1.40+3^4. 40+…+3^2016. 40`
`=>B=40(1+3^4+…+3^2016)\vdots40`
`=>B:40` dư `0`