B=(1/3+3/x^2-3x) : (x^2/27-3x^2+1/2-x) a)tim dk xd b)RG B c)tìm x nguyên để B nguyên 26/08/2021 Bởi Harper B=(1/3+3/x^2-3x) : (x^2/27-3x^2+1/2-x) a)tim dk xd b)RG B c)tìm x nguyên để B nguyên
Đáp án: $\begin{array}{l}B = \left( {\frac{1}{3} + \frac{3}{{{x^2} – 3x}}} \right):\left( {\frac{{{x^2}}}{{27 – 3{x^2}}} + \frac{1}{{3 + x}}} \right)\\a)Đkxd:\left\{ \begin{array}{l}{x^2} – 3x \ne 0\\27 – 3{x^2} \ne 0\\3 + x \ne 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x\left( {x – 3} \right) \ne 0\\3\left( {9 – {x^2}} \right) \ne 0\\x \ne – 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \ne 0;x \ne 3\\x \ne 3;x \ne – 3\\x \ne – 3\end{array} \right. \Rightarrow x \ne – 3;x \ne 0;x \ne 3\\b)B = \left( {\frac{1}{3} + \frac{3}{{{x^2} – 3x}}} \right):\left( {\frac{{{x^2}}}{{27 – 3{x^2}}} + \frac{1}{{3 + x}}} \right)\\ = \left( {\frac{1}{3} + \frac{3}{{x\left( {x – 3} \right)}}} \right):\left( {\frac{{{x^2}}}{{3\left( {3 – x} \right)\left( {3 + x} \right)}} + \frac{1}{{3 + x}}} \right)\\ = \frac{{{x^2} – 3x + 9}}{{3x\left( {x – 3} \right)}}:\left( {\frac{{{x^2} + 3\left( {3 – x} \right)}}{{3\left( {3 – x} \right)\left( {3 + x} \right)}}} \right)\\ = \frac{{{x^2} – 3x + 9}}{{3x\left( {x – 3} \right)}}.\frac{{3\left( {3 – x} \right)\left( {3 + x} \right)}}{{{x^2} – 3x + 9}}\\ = \frac{{ – x – 3}}{x} = – 1 – \frac{3}{x}\\c)B \in Z\\ \Rightarrow – 1 – \frac{3}{x} \in Z\\ \Rightarrow \frac{3}{x} \in Z\\ \Rightarrow x \in Ư\left( 3 \right) = {\rm{\{ }}1;3\} \end{array}$ Vậy x=1 hoặc x=3 thì B nguyên Bình luận
Đáp án:
$\begin{array}{l}
B = \left( {\frac{1}{3} + \frac{3}{{{x^2} – 3x}}} \right):\left( {\frac{{{x^2}}}{{27 – 3{x^2}}} + \frac{1}{{3 + x}}} \right)\\
a)Đkxd:\left\{ \begin{array}{l}
{x^2} – 3x \ne 0\\
27 – 3{x^2} \ne 0\\
3 + x \ne 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x\left( {x – 3} \right) \ne 0\\
3\left( {9 – {x^2}} \right) \ne 0\\
x \ne – 3
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x \ne 0;x \ne 3\\
x \ne 3;x \ne – 3\\
x \ne – 3
\end{array} \right. \Rightarrow x \ne – 3;x \ne 0;x \ne 3\\
b)B = \left( {\frac{1}{3} + \frac{3}{{{x^2} – 3x}}} \right):\left( {\frac{{{x^2}}}{{27 – 3{x^2}}} + \frac{1}{{3 + x}}} \right)\\
= \left( {\frac{1}{3} + \frac{3}{{x\left( {x – 3} \right)}}} \right):\left( {\frac{{{x^2}}}{{3\left( {3 – x} \right)\left( {3 + x} \right)}} + \frac{1}{{3 + x}}} \right)\\
= \frac{{{x^2} – 3x + 9}}{{3x\left( {x – 3} \right)}}:\left( {\frac{{{x^2} + 3\left( {3 – x} \right)}}{{3\left( {3 – x} \right)\left( {3 + x} \right)}}} \right)\\
= \frac{{{x^2} – 3x + 9}}{{3x\left( {x – 3} \right)}}.\frac{{3\left( {3 – x} \right)\left( {3 + x} \right)}}{{{x^2} – 3x + 9}}\\
= \frac{{ – x – 3}}{x} = – 1 – \frac{3}{x}\\
c)B \in Z\\
\Rightarrow – 1 – \frac{3}{x} \in Z\\
\Rightarrow \frac{3}{x} \in Z\\
\Rightarrow x \in Ư\left( 3 \right) = {\rm{\{ }}1;3\}
\end{array}$
Vậy x=1 hoặc x=3 thì B nguyên