b) – 5x -10 . (-7) = 55 c) |x+101| – (-16) = (-43).(-5) d) 3. |x| < 15 e) (x-7) . (x+1) = 0 f) (x-7) . (x+1) > 0 05/11/2021 Bởi Jasmine b) – 5x -10 . (-7) = 55 c) |x+101| – (-16) = (-43).(-5) d) 3. |x| < 15 e) (x-7) . (x+1) = 0 f) (x-7) . (x+1) > 0
$b) – 5x -10 . (-7) = 55$ $⇔-5x+70=55$ $⇔-5x=55-70$ $⇔-5x=-15$ $⇔x=3$ $c) |x+101| – (-16) = (-43).(-5)$ $⇔ |x+101|+16=215$ $⇔|x+101|=215-16$ $⇔|x+101|=199$ ⇒\(\left[ \begin{array}{l}x+101=199\\x+101=-199\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=199-101\\x==-199-101\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=98\\x=-300\end{array} \right.\) $d)3. |x| < 15$ $⇔|x|<5$ ⇒\(\left[ \begin{array}{l}x<5\\x>-5\end{array} \right.\) $Vậy$ $-5<x<5$ e) (x-7) . (x+1) = 0 ⇒\(\left[ \begin{array}{l}x-7=0\\x+1=0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=7\\x=-1\end{array} \right.\) $Vậy$ $x=7;x=-1$ $f) (x-7) . (x+1) > 0$ ⇒\(\left[ \begin{array}{l}\left \{ {{x-7>0} \atop {x+1>0}} \right.\\\left \{ {{x-7<0} \atop {x+1<0}} \right.\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}\left \{ {{x>7} \atop {x>-1}} \right.\\\left \{ {{x<7} \atop {x<-1}} \right.\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x>7\\x<-1\end{array} \right.\) $Vậy$ $x>7$ $hoặc$ $x<-1$ Bình luận
Đáp án: Giải thích các bước giải: b) – 5x – 10 . (-7) = 55 ⇔- 5x + 70= 55 ⇔- 5x = 55 – 70 ⇔- 5x = -15 ⇔ x = -15 : -5 ⇔ x = 3 Vậy x=3 c) |x + 101| – (-16) = (-43) . (-5) ⇔|x + 101| + 16 = 215 ⇔|x + 101| = 215 – 16 ⇔|x + 101| = 199 ⇔\(\left[ \begin{array}{l}x + 101= 199\\x + 101= -199\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x = 199-101\\x=-199 – 101\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x = 98\\x=-300\end{array} \right.\) Vậy x ∈ {98;-300} d) 3. |x| < 15 ⇔|x| < 15 : 3 ⇔|x| < 5 ⇔-5<x<5 e) (x-7) . (x+1) = 0 ⇔\(\left[ \begin{array}{l}x -7= 0\\x + 1= 0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x = 7\\x=- 1\end{array} \right.\) Vậy x ∈ {7;-1} f) (x-7) . (x+1) > 0 ⇔(x-7) và (x+1) cùng dấu TH1: $\left \{ {{x-7>0} \atop {x+1>0}} \right.$ ⇔$\left \{ {{x>7} \atop {x>-1}} \right.$ ⇒x>7 TH2: $\left \{ {{x-7<0} \atop {x+1<0}} \right.$ ⇔$\left \{ {{x<7} \atop {x<-1}} \right.$ ⇒x<-1 Vậy (x-7) . (x+1) > 0 khi \(\left[ \begin{array}{l}x>7\\x<-1\end{array} \right.\) Bình luận
$b) – 5x -10 . (-7) = 55$
$⇔-5x+70=55$
$⇔-5x=55-70$
$⇔-5x=-15$
$⇔x=3$
$c) |x+101| – (-16) = (-43).(-5)$
$⇔ |x+101|+16=215$
$⇔|x+101|=215-16$
$⇔|x+101|=199$
⇒\(\left[ \begin{array}{l}x+101=199\\x+101=-199\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=199-101\\x==-199-101\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=98\\x=-300\end{array} \right.\)
$d)3. |x| < 15$
$⇔|x|<5$
⇒\(\left[ \begin{array}{l}x<5\\x>-5\end{array} \right.\)
$Vậy$ $-5<x<5$
e) (x-7) . (x+1) = 0
⇒\(\left[ \begin{array}{l}x-7=0\\x+1=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=7\\x=-1\end{array} \right.\)
$Vậy$ $x=7;x=-1$
$f) (x-7) . (x+1) > 0$
⇒\(\left[ \begin{array}{l}\left \{ {{x-7>0} \atop {x+1>0}} \right.\\\left \{ {{x-7<0} \atop {x+1<0}} \right.\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}\left \{ {{x>7} \atop {x>-1}} \right.\\\left \{ {{x<7} \atop {x<-1}} \right.\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x>7\\x<-1\end{array} \right.\)
$Vậy$ $x>7$ $hoặc$ $x<-1$
Đáp án:
Giải thích các bước giải:
b) – 5x – 10 . (-7) = 55
⇔- 5x + 70= 55
⇔- 5x = 55 – 70
⇔- 5x = -15
⇔ x = -15 : -5
⇔ x = 3
Vậy x=3
c) |x + 101| – (-16) = (-43) . (-5)
⇔|x + 101| + 16 = 215
⇔|x + 101| = 215 – 16
⇔|x + 101| = 199
⇔\(\left[ \begin{array}{l}x + 101= 199\\x + 101= -199\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x = 199-101\\x=-199 – 101\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x = 98\\x=-300\end{array} \right.\)
Vậy x ∈ {98;-300}
d) 3. |x| < 15
⇔|x| < 15 : 3
⇔|x| < 5
⇔-5<x<5
e) (x-7) . (x+1) = 0
⇔\(\left[ \begin{array}{l}x -7= 0\\x + 1= 0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x = 7\\x=- 1\end{array} \right.\)
Vậy x ∈ {7;-1}
f) (x-7) . (x+1) > 0
⇔(x-7) và (x+1) cùng dấu
TH1:
$\left \{ {{x-7>0} \atop {x+1>0}} \right.$
⇔$\left \{ {{x>7} \atop {x>-1}} \right.$
⇒x>7
TH2:
$\left \{ {{x-7<0} \atop {x+1<0}} \right.$
⇔$\left \{ {{x<7} \atop {x<-1}} \right.$
⇒x<-1
Vậy (x-7) . (x+1) > 0 khi \(\left[ \begin{array}{l}x>7\\x<-1\end{array} \right.\)