b) – 5x -10 . (-7) = 55 c) |x+101| – (-16) = (-43).(-5) d) 3. |x| < 15 e) (x-7) . (x+1) = 0 f) (x-7) . (x+1) > 0

b) – 5x -10 . (-7) = 55
c) |x+101| – (-16) = (-43).(-5)
d) 3. |x| < 15 e) (x-7) . (x+1) = 0 f) (x-7) . (x+1) > 0

0 bình luận về “b) – 5x -10 . (-7) = 55 c) |x+101| – (-16) = (-43).(-5) d) 3. |x| < 15 e) (x-7) . (x+1) = 0 f) (x-7) . (x+1) > 0”

  1. $b) – 5x -10 . (-7) = 55$

    $⇔-5x+70=55$

    $⇔-5x=55-70$

    $⇔-5x=-15$

    $⇔x=3$

    $c) |x+101| – (-16) = (-43).(-5)$

    $⇔ |x+101|+16=215$

    $⇔|x+101|=215-16$

    $⇔|x+101|=199$

    ⇒\(\left[ \begin{array}{l}x+101=199\\x+101=-199\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x=199-101\\x==-199-101\end{array} \right.\)

    ⇔\(\left[ \begin{array}{l}x=98\\x=-300\end{array} \right.\)

    $d)3. |x| < 15$

    $⇔|x|<5$

    ⇒\(\left[ \begin{array}{l}x<5\\x>-5\end{array} \right.\)

    $Vậy$ $-5<x<5$

    e) (x-7) . (x+1) = 0

    ⇒\(\left[ \begin{array}{l}x-7=0\\x+1=0\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x=7\\x=-1\end{array} \right.\)

    $Vậy$ $x=7;x=-1$

    $f) (x-7) . (x+1) > 0$

    ⇒\(\left[ \begin{array}{l}\left \{ {{x-7>0} \atop {x+1>0}} \right.\\\left \{ {{x-7<0} \atop {x+1<0}} \right.\end{array} \right.\)

    ⇔ \(\left[ \begin{array}{l}\left \{ {{x>7} \atop {x>-1}} \right.\\\left \{ {{x<7} \atop {x<-1}} \right.\end{array} \right.\)

    ⇔\(\left[ \begin{array}{l}x>7\\x<-1\end{array} \right.\) 

    $Vậy$ $x>7$ $hoặc$ $x<-1$

     

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

    b) – 5x  – 10 . (-7) = 55

    ⇔- 5x  + 70= 55

    ⇔- 5x         = 55 – 70

    ⇔- 5x         = -15

    ⇔    x         = -15 : -5

    ⇔    x         = 3

    Vậy x=3

    c) |x + 101| – (-16) = (-43) . (-5)

    ⇔|x + 101| + 16 = 215

    ⇔|x + 101|         = 215 – 16

    ⇔|x + 101|         = 199

    ⇔\(\left[ \begin{array}{l}x + 101= 199\\x + 101= -199\end{array} \right.\)

    ⇔\(\left[ \begin{array}{l}x = 199-101\\x=-199 – 101\end{array} \right.\)

    ⇔\(\left[ \begin{array}{l}x = 98\\x=-300\end{array} \right.\) 

    Vậy x ∈ {98;-300}

    d) 3. |x| < 15

    ⇔|x| < 15 : 3

    ⇔|x| < 5 

    ⇔-5<x<5

    e) (x-7) . (x+1) = 0

    ⇔\(\left[ \begin{array}{l}x -7= 0\\x + 1= 0\end{array} \right.\)

    ⇔\(\left[ \begin{array}{l}x = 7\\x=- 1\end{array} \right.\)

    Vậy x ∈ {7;-1}

    f) (x-7) . (x+1) > 0

    ⇔(x-7) và (x+1) cùng dấu

    TH1:

    $\left \{ {{x-7>0} \atop {x+1>0}} \right.$

    ⇔$\left \{ {{x>7} \atop {x>-1}} \right.$ 

    ⇒x>7

    TH2:

    $\left \{ {{x-7<0} \atop {x+1<0}} \right.$

    ⇔$\left \{ {{x<7} \atop {x<-1}} \right.$ 

    ⇒x<-1

    Vậy (x-7) . (x+1) > 0 khi \(\left[ \begin{array}{l}x>7\\x<-1\end{array} \right.\) 

    Bình luận

Viết một bình luận