B1) F= ( √x – 1 : √x ).( √x : √x + 1 + √x : √x-1 ) vs x>0, x khác 0
a) rút gon F
b) tìm x để F – 6 < 0
0 bình luận về “B1) F= ( √x – 1 : √x ).( √x : √x + 1 + √x : √x-1 ) vs x>0, x khác 0
a) rút gon F
b) tìm x để F – 6 < 0”
Đáp án:
$\begin{array}{l} a)x > 0;x \ne 1\\ F = \dfrac{{\sqrt x – 1}}{{\sqrt x }}.\left( {\dfrac{{\sqrt x }}{{\sqrt x + 1}} + \dfrac{{\sqrt x }}{{\sqrt x – 1}}} \right)\\ = \dfrac{{\sqrt x – 1}}{{\sqrt x }}.\sqrt x .\left( {\dfrac{1}{{\sqrt x + 1}} + \dfrac{1}{{\sqrt x – 1}}} \right)\\ = \left( {\sqrt x – 1} \right).\dfrac{{\sqrt x – 1 + \sqrt x + 1}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}\\ = \dfrac{{2\sqrt x }}{{\sqrt x + 1}}\\ b)x > 0;x \ne 1\\ F – 6 < 0\\ \Rightarrow \dfrac{{2\sqrt x }}{{\sqrt x + 1}} – 6 < 0\\ \Rightarrow \dfrac{{2\sqrt x – 6\sqrt x – 6}}{{\sqrt x + 1}} < 0\\ \Rightarrow – 4\sqrt x – 6 < 0\left( {do:\sqrt x + 1 > 0} \right)\\ \Rightarrow \sqrt x > – \dfrac{3}{2}\left( {tm} \right) \end{array}$
Đáp án:
$\begin{array}{l}
a)x > 0;x \ne 1\\
F = \dfrac{{\sqrt x – 1}}{{\sqrt x }}.\left( {\dfrac{{\sqrt x }}{{\sqrt x + 1}} + \dfrac{{\sqrt x }}{{\sqrt x – 1}}} \right)\\
= \dfrac{{\sqrt x – 1}}{{\sqrt x }}.\sqrt x .\left( {\dfrac{1}{{\sqrt x + 1}} + \dfrac{1}{{\sqrt x – 1}}} \right)\\
= \left( {\sqrt x – 1} \right).\dfrac{{\sqrt x – 1 + \sqrt x + 1}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}\\
= \dfrac{{2\sqrt x }}{{\sqrt x + 1}}\\
b)x > 0;x \ne 1\\
F – 6 < 0\\
\Rightarrow \dfrac{{2\sqrt x }}{{\sqrt x + 1}} – 6 < 0\\
\Rightarrow \dfrac{{2\sqrt x – 6\sqrt x – 6}}{{\sqrt x + 1}} < 0\\
\Rightarrow – 4\sqrt x – 6 < 0\left( {do:\sqrt x + 1 > 0} \right)\\
\Rightarrow \sqrt x > – \dfrac{3}{2}\left( {tm} \right)
\end{array}$
Vậy F-6<0 với mọi x>0; x khác 1