B1.So sánh A=(2+1)(2^2+1)(2^4+1)(2^6+1)(2^8+1)(2^16+1) với B=2^32 B2. Cho a+b+c=0. Chứng minh rằng A^3+B^3+C^3=3abc 02/08/2021 Bởi Reagan B1.So sánh A=(2+1)(2^2+1)(2^4+1)(2^6+1)(2^8+1)(2^16+1) với B=2^32 B2. Cho a+b+c=0. Chứng minh rằng A^3+B^3+C^3=3abc
Bài 1 Ta có $A = (2 + 1)(2^2 + 1)(2^4 + 1)(2^6 + 1)(2^8 + 1)(2^{16} + 1)$ $= 1.(2 + 1)(2^2 + 1)(2^4 + 1)(2^6 + 1)(2^8 + 1)(2^{16} + 1)$ $= (2-1) (2 + 1)(2^2 + 1)(2^4 + 1)(2^6 + 1)(2^8 + 1)(2^{16} + 1)$ $= (2^2-1)(2^2+1)(2^4 + 1)(2^6 + 1)(2^8 + 1)(2^{16} + 1)$ $= (2^4-1)(2^4 + 1)(2^8+1)(2^{16} + 1)(2^6+1)$ $= (2^8-1)(2^8+1)(2^{16} + 1)(2^6 + 1)$ $= (2^{16} – 1)(2^{16} + 1)(2^6+1)$ $= (2^{32}-1)(2^6 + 1)$ Ta có $(2^{32} – 1)(2^6 + 1) > (2^{32} – 1). 2^6 > 2^{31} . 2^6 = 2^{37} > 2^{32}$ Vậy $A > B$. Bài 2 Ta có $VT = a^3 + b^3 + c^3$ $= (a+b)^3 + c^3 – 3ab(a + b)$ $= (a + b + c)[(a+b)^2 – c(a+b) + c^2] – 3ab(-c)$ (do $a + b + c = 0$) $= 3abc = VP$ Bình luận
Bài 1
Ta có
$A = (2 + 1)(2^2 + 1)(2^4 + 1)(2^6 + 1)(2^8 + 1)(2^{16} + 1)$
$= 1.(2 + 1)(2^2 + 1)(2^4 + 1)(2^6 + 1)(2^8 + 1)(2^{16} + 1)$
$= (2-1) (2 + 1)(2^2 + 1)(2^4 + 1)(2^6 + 1)(2^8 + 1)(2^{16} + 1)$
$= (2^2-1)(2^2+1)(2^4 + 1)(2^6 + 1)(2^8 + 1)(2^{16} + 1)$
$= (2^4-1)(2^4 + 1)(2^8+1)(2^{16} + 1)(2^6+1)$
$= (2^8-1)(2^8+1)(2^{16} + 1)(2^6 + 1)$
$= (2^{16} – 1)(2^{16} + 1)(2^6+1)$
$= (2^{32}-1)(2^6 + 1)$
Ta có
$(2^{32} – 1)(2^6 + 1) > (2^{32} – 1). 2^6 > 2^{31} . 2^6 = 2^{37} > 2^{32}$
Vậy $A > B$.
Bài 2
Ta có
$VT = a^3 + b^3 + c^3$
$= (a+b)^3 + c^3 – 3ab(a + b)$
$= (a + b + c)[(a+b)^2 – c(a+b) + c^2] – 3ab(-c)$ (do $a + b + c = 0$)
$= 3abc = VP$