B1: Tìm x, bt: x^3-16x=0
B2 cho biểu thức A= x^3 – 3x^2 – x + 3/ x^2- 3x. rút gọn biểu thức
B3 phân tích đa thức sau thành nhân tử
a, M= x^4+ 2x^3+ x^2
b, N= 3x^2+4x-7
B1: Tìm x, bt: x^3-16x=0
B2 cho biểu thức A= x^3 – 3x^2 – x + 3/ x^2- 3x. rút gọn biểu thức
B3 phân tích đa thức sau thành nhân tử
a, M= x^4+ 2x^3+ x^2
b, N= 3x^2+4x-7
Đáp án + Giải thích các bước giải:
Bài 1 :
`x^3 – 16x = 0 => x(x^2 – 16) = 0 => x(x – 4)(x + 4) = 0 => `\(\left[ \begin{array}{l}x=0\\x=\pm4\end{array} \right.\)
Vậy `x in {0;pm4}`
Bài 2 :
`A = (x^3 – 3x^2 – x + 3)/(x^2 – 3x) = [x^2(x – 3) – (x – 3)]/[x(x – 3)] = [(x – 3)(x^2 – 1)]/[x(x – 3)] = (x^2 – 1)/x = [(x – 1)(x + 1)]/x`
Bài 3 :
`a) M = x^4 + 2x^3 + x^2 = x^2(x^2 + 2x + 1) = x^2(x + 1)^2`
`b) N = 3x^2 + 4x – 7 = 3x^2 – 3x + 7x – 7 = 3x(x – 1) + 7(x – 1) = (x – 1)(3x + 7)`